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Spatial pattern analysis in ecology based on Ripley's K-function: 
Introduction and methods of edge correction 

Haase, Peter 

Department of Pure and Applied Biology, University of Leeds, Leeds LS2 9JT, UK; 
Tel. +44 113 233 2816; Fax +44 113 233 2835; E-mail PABPH@LEEDS.AC.UK 

Abstract. Spatial pattern analysis based on Ripley's K-func- 
tion is a second-order analysis of point patterns in a two- 
dimensional space. The method is increasingly used in studies 
of spatial distribution patterns of plant communities, but the 
statistical methods involved are sometimes poorly understood 
or have been modified without evaluating the effects on re- 
sults. The procedures of field data acquisition, statistical analy- 
sis, and the test for the null hypothesis of complete spatial 
randomness are described and the presentation of results is 
discussed. Different methods of edge correction were tested 
on a computer-generated random pattern and a mapped distri- 
bution of a Mediterranean shrubland. The inclusion of buffer 
zones around mapped plots describes the spatial pattern most 
accurately, but may not warrant the additional labour in- 
volved. Three variations of the weighted edge correction yielded 
comparable results for the distribution patterns tested. The 
toroidal edge correction may give biased results for non- 
random patterns. Recommendations for standardisation of the 
statistical procedures and data presentation are given. 

Keywords: Boundary correction; Buffer zone; Edge correc- 
tion; Monte Carlo simulation; Second-order statistics. 

Introduction 

Spatial pattern in plant communities is of particular 
interest to ecologists because it can reveal information 
on stand history, population dynamics and competition. 
Simple statistical procedures like the nearest neighbour 
method (Greig-Smith 1983) have long been employed 
in forest ecology with the main purpose of estimating 
stand density and standing biomass from subsamples of 
tree populations. With the rapidly increasing impor- 
tance of statistics in biology, more elaborate analytical 
methods were developed, such as the test of Clark & 
Evans (1954; Simberloff 1979), Pielou's (1960) index 
of non-randomness, the contiguous quadrat technique 
(Greig-Smith 1983), or Morisita's (1959) index. The 

primary question to be answered is whether an analysed 
distribution is random or non-random. Non-random pat- 
terns may be either clumped (aggregated) or regular 

(dispersed). Regular patterns do not always conform 
with ecological theory, e.g. the apparently regular spac- 
ing of certain desert shrubs (e.g. Ebert & McMaster 

1981; King & Woodell 1984; Cox 1987). 
In particular, the development of density functions 

using the second moment, i.e. the variance of all point- 
to-point distances, has supplied a powerful analytical 
tool for the study of distribution patterns. Spatial point 
pattern analysis based on Ripley's (1976) K-function is 
now widely used in plant ecology; it has been applied to 
distribution patterns of herbs (Kenkel 1993), desert 
shrubs (Prentice & Werger 1985; Skarpe 1991) and 

tropical forest trees (Sterner et al. 1986). The method 
can also be used to study sedentary animals such as 

barnacles, or stationary constructions such as ant hills or 
birds' nests (Ripley 1981). Some researchers have 

developed their own computer programs (ter Braak 

1980; Getis & Franklin 1987; Duncan 1991), others 
have used or modified programs made available by 
colleagues (Prentice & Werger 1985; Stewart & Rose 

1990; Leemans 1991; Skarpe 1991). However, most 
authors provide insufficient information regarding math- 
ematical procedures, and some have presented formulas 
which deviate slightly from the original version or con- 
tain errors. The statistical literature referred to is often 
hard to understand for non-mathematicians. In view of 
the expected rise in popularity of spatial pattern analysis 
among ecologists, it is desirable to introduce some 
standardization of the statistical methods involved in 
order to allow for a proper evaluation of the results. This 
should in particular include the effect of different proce- 
dures for edge correction proposed in the literature, 
which have been very little discussed (Ripley 1979). 

This paper describes univariate (single-species) spa- 
tial pattern analysis based on Ripley's K-function, fo- 

cusing on the test for spatial randomness, and providing 
detailed information on the statistical background. Meth- 
ods for edge correction are evaluated in comparative 
tests, using as examples a computer-generated random 

pattern and a real distribution pattern of Mediterranean 
shrubland. 
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Methods 

Acquisition offield data 
Sample plots are typically rectangular, because they 

are more easily marked and recorded in the field than 
circular plots, but spatial point pattern analysis can be 
applied to either shape. Plot size depends on the density 
of the species investigated; often only specimens above 
a certain size class are considered. In the publications 
reviewed here, plot sizes range from 25 m2 (Kenkel 
1993) to 0.8 ha (Szwagrzyk & Czerwczak 1993); Getis 
& Franklin (1987) used aerial photographs to map domi- 
nant conifers in 1.44-ha plots. Plots may be placed 
randomly or semi-randomly but should contain typical 
examples of the vegetation. Obvious environmental vari- 
ation should also be avoided, because this could mask 
underlying patterns resulting from biotic interactions. 
The location of all plants in the plot with respect to the 
plot sides is determined accurately. In small plots dis- 
tances can be measured to at least two contiguous bor- 
ders, but with increasing plot size, say > 100 m2, this 
method is unreliable, unless the plot is subdivided. The 
alternative is to measure inter-plant distances, followed 
by conversion to coordinates using trigonometric func- 
tions (Rohlf & Archie 1978); this appears to give accu- 
rate data. Besides the pair of coordinates it is useful to 
record for each plant other variables like canopy height, 
stem and/or crown diameter, etc., because this allows 
stratification of the data (e.g. Gibson & Menges 1994). 
The example of a mapped distribution pattern discussed 
in this paper was derived from a 10m x 10m plot (Fig. 
1), which was subdivided into four 5 m x 5 m plots for 
measuring plant coordinates to the nearest 0.1 m. 

Statistical background 
Spatial point pattern analysis uses all point-to-point 

(plant-to-plant) distances to describe two-dimensional 
distribution patterns. Rather than the first-order statistic, 
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Fig. 1. Mapped distribution pattern of the Mediterranean sub- 
shrub Anthyllis cytisoides L. (n = 111). 

i.e. the mean of the distances as in nearest-neighbour 
methods, the variance of the distances, the second-order 
statistic, is of interest; hence the method has been called 
second-order analysis. In spatial point pattern analysis a 
circle of radius t is centred in each point and the number 
of neighbours within the circle is counted. For n indi- 
vidual points distributed in an area A, the density (A = n/ 
A) gives the mean number of points per unit area. The 
function A K(t) gives the expected number of further 
points within radius t of an arbitrary point. If the points 
are randomly (Poisson) distributed, the expected value 
of K(t) equals r t2, i.e. the area of a circle of radius t, and 
a plot of xK(t) versus t should therefore be linear. 

In a first analytical step, the function K(t) is calcu- 
lated from the data and then tested against the null 
hypothesis of complete spatial randomness (CSR of 
Diggle 1983), i.e. it is assumed that all points are distrib- 
uted independently. If the null hypothesis of spatial 
randomness has to be rejected for the field data, other 
hypothetical models for particular non-random patterns 
may be tested (e.g. Diggle et al. 1976; Ripley 1979; 
Sterner et al. 1986; Kenkel 1993), but these are not 
discussed in the present paper. Ripley (1976, 1981) gave 
an approximately unbiased estimator for K(t) as 

K(t)=n 2A w I I ) (1)i) 

where n is the number of events (plants) in the analysed 
where n is the number of events (plants) in the analysed 
plot, A is the area of the plot in m2, It is a counter 
variable, uij is the distance between events i andj, and 

lj is a weighting factor to correct for edge effects. Since 
distribution patterns may vary depending on the spatial 
scale of investigation - for instance, tree seedlings may 
show random or regular patterns at scales of a few m, 
but a clumped distribution at larger scales - K(t) has to 
be calculated separately for each distance t. The inter- 
vals for t are not prescribed and have to be determined 
by the investigator depending on the resolution required. 

Calculation of the interpoint distance uij 
Since all points are defined by a pair of coordinates 

x and y, the distance between two points i andj can be 
calculated by: 

(2) 

The calculated interpoint distance is then compared 
with the current value of t. If uij < t, the counter variable 

It(uij) in Eq. (1) is set to 1; otherwise it is set to 0. This 
procedure is repeated for all point-to-point distances 
and It(uij) is summed for each distance t. This means that 
each pair of points is considered twice, because al- 
though the distance i -j is equal to the distancej - i, point 
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j may have a different spatial neighbourhood in form of 
a plot boundary, and It(uij) then requires a different 
weighting factor wij (see below). The term i ?j in Eq. (1) 
denotes that self-comparisons are excluded. 

The problem of edge effects 
If a calculated interpoint distance ui1 is greater than 

the distance between point i and the nearest plot bound- 
ary, part of the spatial neighbourhood of point i lies 
outside the plot and cannot be evaluated without a 
certain bias. Methods to account for edge effects include 
the addition of a buffer zone around the plot, consider- 
ing the plot area as a torus, i.e. a three-dimensional 
surface without boundaries, and correcting It(uij) by the 

weighting factor wij [Eq. (1)]. 

Buffer zones (Fig. 2) were used by Sterner et al. (1986) 
for rectangular plots and by Szwagrzyk & Czerwczak 
(1993) for circular plots. Typically, buffer zones must 
have a width equal to the largest value of t used in the 
analysis. One shortcoming of this method is that only 
the plants within the inner plot can be analysed, which 
means that all plants in an area of up to 4 x the size of the 
analysed plot have to be recorded. On the other hand, 
this method is the most realistic one, since only dis- 
tances to real neighbour plants are used in the calcula- 
tions. A necessary presumption is that the distribution 
pattern in the buffer zone is the same as in the inner plot. 
In the computational procedure, only points in the inner 
plot are considered as points i, while points j include all 
points both in the inner plot and the buffer zone. 

For the toroidal edge correction, the area of the plot is 
considered to be wrapped around a torus. Points at 
opposite sides of the plot are now close to each other; the 
boundary does not exist. In practice, the actual plot is 
replicated eight times around itself (Ripley 1979, 1981; 
Upton & Fingleton 1985) (Fig. 3). If t is kept smaller 
than half the shorter side of the rectangular plot, only the 
shortest of the possible distances of a given point i to one 
of the nine replicates of point j is accepted as the 
interpoint distance uij. The distances between a given 
point i and the nine replicates of pointj are calculated as 
follows: 

u ij 
= (Xi - xj )2y 

uij 
= (xi -Xj)2+[Yi -(yj b)]2 

ij= [xi -(x?a)]2+(y i -y)2 

uij = i - (xi ?a)2+[yi - (yj ?b)2 

20 
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1983), the formulas given below only apply to values of 

t of up to 1/2 the shorter side of the rectangular plot. If 
larger values of t are considered, circles ce ntred in 

points near the middle of the plot may intersect three 

assumption that the region surrounding the study plot 

has a point density and distribution pattern similar to the 

nearby atreas within the boundary (Getis & Franklin 

1987). Getis & Franklin's (1987) anweighted eAndersen (1992). The orrec- 
wetiong for rectangular pwijot is equas follows: the proportion of the 

between two points and through j, this great lies within the plodistance 
boundaries (Fig. 4). Although this method of edge cor-4A): 

between i and the nearest boundary (e) (Fig. 4A)' 

i= - coS '(el /Ui)/, (3) 

The inverse cosine function returns the value of a in 
radians; division by r yields the proportion of this angle 
with respect to one half of the circumference of the 
circle (the full circumference is considered in Eqs. 4 and 
5), and its subtraction from 1 gives the proportion of the 
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Fig. 3. Realisation of the toroidal edge correction. A plot with 
20 points is replicated eight times around itself. 

circumference which is inside the plot. Note that wij is 
entered as a denominator in Eq. (1), so the value of It(uij) 
increases to > 1. If the distance between i andj is greater 
than either distance between i and the two nearest bounda- 
ries (e/, e2) (Fig. 4B), then 

wj = -[cos- (el/u,i) + cos- (e2/uj) + /2]2 (4) 

The values in radians of a, and a2 are added, the 
addition of the term Tr/2 corresponds to the 90? angle 
covering the enclosed corner of the plot. Division by 2r 
gives the proportion of the circumference of the circle 
outside the plot which is again subtracted from 1. 

One special case was not considered by Getis & 
Franklin (1987). If both distances between point i and 
the two nearest boundaries are smaller than the distance 
between i and the nearest corer of the plot, part of the 
circumference included in the term 7r/2 in Eq. (4) actu- 
ally lies within the plot (Fig. 4C). While the resulting 
error may be small, it is possible to calculate the exact 
proportion by changing Eq. (4) to: 

W, =1 -[2cos (el/Ui)+22cos-l(e2/Ui)]2 (5) 

As an additional computation step it is necessary to 
calculate the distances of point i to all four comers of the 
plot. If all these distances are smaller than the distances 
between i and both nearest boundaries e, and e2, Eq. (4) 
applies, otherwise Eq. (5). 

Diggle (1983) gave formulae for a weighted bound- 
ary correction for both rectangular and circular plots. 

Diggle's equations for the correction in rectangular 
plots differ slightly from those given by Getis & Franklin 
(1987) but both versions give identical results. How- 
ever, Diggle (1983; p. 72) provided different conditions 
for their application by prescribing a comparison of the 
squared values of ui and e1 and e2. 

Statistical significance and confidence intervals 
After the data have been analysed by the method 

described above, a plot of K(t) versus t may reveal 
deviations from Mrt2, expected under CSR. The deviation 
must now be tested for statistical significance. One 
method employs the calculation of constant approxi- 
mate confidence intervals around CSR, defined by ? 
1.42 IA/(n - 1) and ? 1.68 IA/(n - 1) as reasonable 

approximations of the 0.05 and 0.01 point level of 
significance, respectively (Getis & Franklin 1987; 
Szwagrzyk & Czerwczak 1993). The latter authors give 
a formula which contains an error, but apparently used 
the correct version for their calculations. 

Although computationally much more time-consum- 
ing, most authors, however, employ Monte Carlo meth- 
ods to determine the statistical significance of their 
results. The term 'Monte Carlo' has been rarely defined 
in papers that say they have used it (Judson 1994); here 
I follow the definition given by Manly (1991): "Essen- 
tially the idea is to use computer-generated data to 
determine the amount of variation to be expected in 
sample statistics". In the context of spatial pattern analy- 
sis, Monte Carlo methods simulate randomly generated 
plots of the same dimensions as the observed plot. In 
practice, random sampling is replaced by pseudo-ran- 
dom sampling and it is assumed that the random number 
generator employed is satisfactory (Besag & Diggle 
1977). The simulated plot is then analysed as before. 
This procedure is repeated 19 times and the lowest and 
highest value of K(t) for each t is used to define the 
lower and upper bound of a 95% confidence envelope. 
A 99% confidence envelope requires 99 simulations. 
The confidence interval for the null hypothesis is de- 
fined by the number of simulations (n) and equals n/(n + 
1) x 100% (Leemans 1991). 

Comparison of different methods of edge correction 
All five methods of edge correction described above, 

i.e. buffer zone, toroidal edge correction, and the three 
versions of the weighted edge correction described by 
Diggle (1983), Getis & Franklin (1987), and the modifi- 
cation by Haase (this paper), were tested in two experi- 
mental set-ups. A square plot of 100 randomly placed 
points was simulated (inner plot in Fig. 2). This plot was 
surrounded by a buffer zone with a width of 1/2 the 
length of the plot side, which contained a further 300 
random points. Only the pattern of the inner plot was 

578 

? I 

bi 

. I 

? 
I 

?t It 

*@ * |~~~~~~~~~~~~ 
l 

I 

?.? 

* . ? I 

L --- - - -? 

II- 
* 

- 

-.- 

I - -@ - 

?I ? t * . -~~ 

?I* I I 

I' 

This content downloaded from 129.219.247.33 on Tue, 19 Jan 2016 13:21:20 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp
Michelle
Highlight



- Spatial pattern analysis based on Ripley's K-function and its use in ecology 

Fig. 4. Examples of three different cases to be considered for 
the weighted edge correction. The calculation of the parameter 
It(uij) in Ripley's estimator for K(t) requires weighting by the 
proportion of the circumference of the circle with radius ui 
centred on point i and passing through j which lies within the 
plot. A, case 1 of the weighted edge correction, Eq. (3) has to 
be applied; B, case 2 of the weighted edge correction, equation 
(4) applies; C, case 3 (Haase, this paper) of the weighted edge 
correction, Eq. (5) applies. 

analysed. For the generation of 95% confidence enve- 

lopes, 19 sets of 400 pairs of coordinates which were 
distributed between the inner plot and the buffer zone as 
before, were generated with a random number genera- 
tor. To avoid variation in the simulated data, these same 
sets of random coordinates were used in all five methods 
of edge correction. A mapped 10 m x 10 m plot contain- 

ing 111 individuals of the Mediterranean sub-shrub 

Anthyllis cytisoides (Fig. 1), was analysed with the same 

procedure, except that the analysis with the buffer zone 
method could not be performed because of insufficient 
field data. 

Results 

Presentation and interpretation 

Results of spatial pattern analysis using Ripley's K- 
function are normally presented as graphs with the 

sample statistic K(t) or a derived variable plotted against 
the independent variable t. The original sample statistic 
K(t) is rarely plotted, however. Andersen (1992) pre- 
ferred /K(t) while Getis & Franklin (1987) used their 
own equivalent of /l[K(t)/7]. Since K(t) = rt2, the trans- 
formation t = - [K(t)/r] yields a linear plot of the sample 
statistic against t (Fig. 5). Following Besag (1977), 
some authors preferred the derived variable L(t) = /[K(t)/ 
I] (Sterner et al. 1986; Szwagrzyk 1990; Duncan 1991; 
Szwagrzyk & Czerwczak 1993). Note that plots of /[K(t)/ 
Jr] as shown in Fig. 5 may have a poor resolution when 
the values of the sample statistic are close to spatial 
randomness and the confidence envelope is narrow. 

Most authors are mainly interested in the deviation 
of the sample statistic from complete spatial random- 
ness and plot l/[K(t)/n] - t) or (L(t) - t) against t. The 

advantage of this transformation is that, under the null 

hypothesis of complete spatial randomness, the derived 
function has an expectation of 0 for all values of t 

(Skarpe 1991). The resulting plots are more informative 
and also yield a much higher resolution (Figs. 6, 7). 
Prentice & Werger (1985), Leemans (1991), and Skarpe 
(1991) named the corresponding derived variable K*(t) 
= I[K(t)/7c] - t, but the latter two authors give an 
erroneous formula for its calculation. 

If the deviation of the sample statistic from zero 

expectation is positive, and above the upper limit of the 
confidence envelope, a clumped distribution of the sam- 

pled points can be assumed, while negative deviation 
indicates a dispersed or regular pattern. If the sample 
statistic remains within the bounds of the confidence 

envelope for any given t, the null hypothesis of com- 

plete spatial randomness cannot be rejected. Occasion- 

ally, t - /[K(t)/r] has been plotted against t (Upton & 

Fingleton 1985; Kenkel 1988, 1993; Rebertus et al. 
1989). This preference, however, reverses the sign of 
the sample statistic, so that values of /[K(t)/lr] > t now 

appear on the negative scale. The interpretation of 

clumped versus regular distribution pattern is thus re- 
versed, which may result in some confusion. 

Edge corrections and their effects on results 

Results of spatial pattern analysis of the simulated 

plot by the five different methods of edge correction 
discussed above show basically the same shape for the 
curve of the derived sample statistic /[K(t)/7c] - t (Fig. 
6). All plots show a distribution pattern close to com- 
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Fig. 5. Result of spatial pattern analysis of the distribution of 
111 Anthyllis cytisoides L. shrubs using the weighted edge 
correction method of Getis & Franklin (1987). The function 
K(t) was calculated for each 0.5-m interval and the derived 
sample statistic /[K(t)/lr] is plotted against t (solid line). The 
dotted lines give a 95% confidence envelope for complete 
spatial randomness. 

plete spatial randomness, except for the values for t = 1, 
which are just outside the confidence envelope (Fig. 6). 
These significant deviations from randomness are picked 
up by all five methods. The method considering a buffer 
zone gives almost identical results to those of Getis & 

Franklin, and Haase. The plot for the toroidal edge 
correction, which basically creates its own buffer zone 

by replicating its distribution pattern around itself, gives 
somewhat different values for the sample statistic and 
shows narrowing confidence envelopes with increasing 
values of t. The three methods for the weighted edge 
correction produce plots of exactly the same shape, but 

varying in their deviation from rt2. The method of 
Haase (this paper), which additionally considers case 3 
for the edge correction procedure, gives slightly lower 
values at t > 1.5 m. This is to be expected, because the 

computations following Getis & Franklin ignore in 
some cases a small part of circumference actually within 
the plot (see Fig. 4C) thus giving overestimates of the 

sample statistic. The differences between the two results 
obtained are small for the values of t considered in this 

paper, but become proportionally larger as t (plot size) 
increases. The weighted edge correction of Diggle (1983) 
gives underestimates of the values of K(t) because of the 

particular criteria set for the application of the boundary 
correction. Diggle uses the squares of the interpoint 
distance uij and of the distance from point i to the nearest 

boundary, while Getis & Franklin compare simple dis- 
tances. These two conditions are not equivalent. In some 
cases Diggle's conditions ask for a single boundary 
correction when a double one is necessary, or for none 
when a single correction is needed. The result is a 
considerable underestimate of the value of K(t). 

The natural stand of Anthyllis cytisoides reveals a 
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Fig. 6. Analyses of a simulated random pattern (central plot in 

Fig. 2) by different methods of edge correction. The derived 
sample statistic 1/[K(t)/7l] - t (solid lines) has been plotted 
against t for each 0.5 m interval. The dotted lines give a 95% 
confidence envelope for complete spatial randomness. A, 
buffer zone method; B, toroidal edge correction; C, weighted 
edge corrections of Getis & Franklin (solid line), Haase (long 
dash) and Diggle (short dash). Only the confidence envelope 
derived by the method of Getis & Franklin is shown. 

significantly clumped pattern at distances of up to 0.8 m 
and again at 3-5 m when they are analysed with any one 
of the three weighted edge correction methods (Fig. 7). 
The toroidal edge correction, however, yields a plot 
which does not significantly differ from random at 
distances > 1 m. The weighted edge correction of Getis 
& Franklin shows again small overestimates of the 
sample statistic at values of t > 1.5 m compared to the 
correction of Haase. The sample statistic and confi- 
dence envelopes derived by Diggle's weighted edge 
correction show a considerable shift to lower values, 
although still allowing the same interpretation of the 
observed pattern. 
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Fig. 7. Analyses of a mapped non-random pattern (shown in 
Fig. 1) using different methods of edge correction. The de- 
rived sample statistic xI[K(t)/fr] - t (solid lines) has been 
plotted against t for each 0.5 m interval. The dotted lines give 
a 95% confidence envelope for complete spatial randomness. 
A, toroidal edge correction; B, weighted edge correction of 
Getis & Franklin (solid line), Haase (long dash) and confi- 
dence envelope by Getis & Franklin (dotted lines); C, weighted 
edge correction of Diggle. 

Discussion 

Most methods for analysing spatial pattern in plant 
communities fall into two categories (Goodall & West 
1979): those based on distances, e.g. the Clark-Evans 
test (Clark & Evans 1954), and those based on area 
(quadrats), e.g. the contiguous quadrat method of Greig- 
Smith (1983). Both lines of pattern analysis have been 
continuously modified, but problems remain (e.g. 
Ludwig & Goodall 1978; Goodall & West 1979) and an 
ever increasing variety of such methods, giving differ- 
ent results for the same patterns (Ludwig & Goodall 
1978; Goodall & West 1979), is now in use. The most 
powerful of the area-based methods appears to be the 
Two Term Local Quadrat Variance (TTLQV, Hill 1973) 
and its modifications (Ludwig & Goodall 1978; Dale & 
Blundon 1990; Ver Hoef et al. 1993). 

As an alternative, combined count-distance methods 
such as Ripley's K-function (Diggle 1983) appear to 
offer solutions for some of the problems encountered by 
the methods mentioned above. Spatial point pattern 
analysis by Ripley's K-function has proved to be a 
useful and informative tool for the study of plant distri- 
bution patterns and its popularity among ecologists will 
probably rise. This calls for a certain level of standardi- 
sation of the statistical methods, so that published re- 
sults can be more easily evaluated. While one under- 
stands that some researchers wish to modify the basic 
method to suit a particular problem, the 'standard user' 
should adhere to the original version, i.e. use the unbi- 
ased estimator for K(t) proposed by Ripley (1976, 1977) 
given in Eq. (1) and plot the derived sample statistic 
I[K(t)/7r] - t or L(t) - t (Ripley 1979, 1981) against t. 

There is some scope for choice of the method of edge 
correction, but possible effects of a particular method on 
the results should be discussed. The method of Getis & 
Franklin (1987) as modified in this paper gave similar 
results for the patterns tested, but the discrepancy in- 
creased towards larger values of t. It is therefore recom- 
mended to incorporate case 3 of the edge correction into 
present or future programs. Although the formulae for 
calculations of the case 1 and case 2 edge corrections 
given by Diggle (1983) give identical results to those of 
Getis & Franklin, underestimates of K(t) result because 
of the inadequate criteria set for their application. While 
the buffer zone method most realistically reflects the 
existing distribution pattern, it may not warrant the 
additional field work involved. If several adjacent plots 
are established, however, it may be convenient to ana- 
lyse the inner parts by this method for comparison. The 
toroidal edge correction may give results that differ 
from the other methods tested because the addition of 
replicate areas to each side of the plot is a potential 
source of error. When non-random and bivariate patterns 
are analysed, clusters at opposite sides of the plot will be 
replicated at close proximity to each other. The estimation 
of the distribution of point-to-point distances then be- 
comes biased to an unknown extent and the ecological 
interpretation of the spatial relationships may be flawed. 

The null hypothesis is not limited to the test of 
spatial randomness of distribution patterns, although 
this is normally the first pattern tested for. If a clumped 
or dispersed pattern is analysed, appropriate models 
which generate the corresponding pattern, are used with 
Monte Carlo methods to create a confidence envelope 
for this pattern (Ripley 1977; Diggle 1983; Upton & 
Fingleton 1985). A further strength of the technique is 
that it also can be employed to investigate bivariate 
distribution patterns and give information on the spatial 
relationships between two species, two size classes, two 
life stages, etc. (e.g. Cox 1987; Duncan 1991). 
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