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ABSTRACT. In this paper, we introduce a new spatially constrained clustering problem called the
max-p-regions problem. It involves the clustering of a set of geographic areas into the maximum
number of homogeneous regions such that the value of a spatially extensive regional attribute is above
a predefined threshold value. We formulate the max-p-regions problem as a mixed integer programming
(MIP) problem, and propose a heuristic solution.

1. INTRODUCTION

According to Fischer (1980), a homogeneous region consist of a set of spatially con-
tiguous areas which show a high degree of similarity regarding a set of attributes; e.g.,
degree of diversity, per capita income, level of quality of life, etc. This type of region is
different from a functional region in the sense that the latter consists of spatially contigu-
ous areas with a high degree of interdependence; e.g., high levels of commuting flows or
commercial trade between them.!

The problem of aggregating areas into homogeneous regions is referred to by a
host of different names, including region-building Byfuglien and Nordgard (1973), con-
ditional clustering Lefkovitch (1980), clustering with relational constraints Ferligoj and
Batagelj (1982), constrained clustering Legendre (1987), contiguity constrained cluster-
ing Murtagh (1992), regional clustering Maravalle and Simeone (1995), contiguity con-
strained classification Gordon (1996), regionalization Wise et al. (1997), or clustering
under connectivity constraints Hansen et al. (2003).2 The literature on this topic focuses
on particular aspects of the problem such as strategies to ensure spatial contiguity of each
region, ways to measure homogeneity, strategies to explore the solution space efficiently,
and ways to check for solution feasibility.

From this basic problem (i.e., to aggregate areas into homogeneous regions) other
sub-branches have emerged, which add new constraints with the aim to provide solutions
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! Semple and Green (1984) refers to these two types of regions as uniform and functional regions.

2 For literature reviews on constrained clustering, see Murtagh (1985), Gordon (1996) and Duque
et al. (2007). See also Legendre (1987) for a discussion about why constrained clustering is appropriate
and necessary.
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to specific requirements in empirical applications. The most important constraints are:
(a) shape of the regions (e.g., compactness, similarity to existing solutions); (b) equality of
an attribute values across the regions (e.g., population equality); and (c) membership con-
straints (e.g., boundary integrity®). Each one of these additional constraints has generated
a number of contributions suggesting different formulations and solution strategies.

Although models for solving either the problem of basic homogeneous regions or
the extended versions of this problem have been under development for the past four
decades, the dramatic increase in the availability of highly disaggregated spatial data
and computational resources provides the opportunity for regional scientists to explore
new applications of spatial aggregation models. In this process, new challenges appear
that need to be addressed with new formulations. One of those challenges is related to
the definition of the number of homogeneous regions to be designed (the scale problem);
many practitioners know that they need to aggregate areas into homogeneous regions but
they do not know how many regions they should create.

While there is a wide range of methods for finding an appropriate level of aggre-
gation,? choosing among these methods is complicated by a number of factors: (a) the
performance of those methods is data dependent; (b) the choice of the number of regions
is complicated due to a wide variety of methods available ; and, (c) the correct selection of
the method requires a deep knowledge of the properties of each one of the available op-
tions. This situations has created a “barrier” for the use of the available spatial clustering
techniques in practice.

Our experience with spatial aggregation models has shown us that in many empirical
applications the researcher does not want to use spatial clustering as a tool for summa-
rizing information or finding the real number of clusters in the data, but as a tool for
designing suitable regions for analysis. In this scenario, although the researcher does not
know how many regions (clusters) need to be designed, she may know a condition that
must be satisfied by every region in order to make them suitable for the analysis. That
information can then be used as a way to endogenize the number of regions.

This paper introduces the exact formulation and a solution method for a new type of
spatially constrained clustering that we coined as the max-p-regions problem. In brief, the
max-p-regions involves the aggregation of n areas into an unknown maximum number of
homogeneous regions, while ensuring that each region satisfies a minimum threshold
value (TH) imposed on a predefined spatially extensive attribute (e.g., number of
households per region, area per region, population per region, etc.).

A unique feature of this model is that the number of regions is modeled as an endoge-
nous parameter. Another important characteristic of this formulation is that, opposite to
many existing approaches, the way the model satisfies the spatial contiguity constraint
does not rely on imposing constraints on the shape of the regions (i.e., maximal compact-
ness); instead, the max-p-regions model lets data dictate the shape of each region, which
is a desirable characteristic in many empirical applications in regional science.

One of the most promising uses of the max-p-regions model is the definition of study
regions. For example, in the statistical analysis of rates for small area estimation (i.e.,
crime rates, disease rates, unemployment rates) the precision with which the underly-
ing rate can be measured is inversely related to the size of the population within the

3 This topic includes constraints that avoid solutions with regions being split by natural or artificial
barriers. It also includes constraints that force a subset of areas to be assigned to the same homogeneous
region.

4 Milligan and Cooper (1985) evaluate 30 procedures for determining the number of clusters. The
authors refer to this decision as “the dilemma of selecting the number of clusters.” See also Gordon (1999)
for a discussion on this topic.
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enumeration district. It is often desirable to combine small contiguous units so as to in-
crease the precision of the rate estimation. In these cases, the max-p-regions algorithm
can be used to design new study regions where (a) the loss of observations is minimized
because it seeks to perform the minimum number of spatial aggregation; (b) the degree
of aggregation bias is minimized, because intraregional homogeneity is maximized; and,
(c) the new regions ensure valid statistical inference. It is also important to note that the
max-p-regions model could be used as a way to avoid subjectivity in the definition of both
scale (number of regions) and aggregation (shape of the regions) in applied analysis.

The remainder of the paper is organized as follows. A formal statement of the max-
p-regions problem is formulated in the next section. A literature review is presented in
Section 3. The exact formulation of the max-p-regions problem is introduced in Section 4.
The heuristic algorithm for solving the max-p-regions problem, including some computa-
tional experience, is presented in Section 5. The article concludes with a summary and
recommendations for future work.

2. PROBLEM STATEMENT

Areas
Let A= {A, Ay, ..., A,} denote a set n = |A| areas.

Attributes

Let A;, denote the attribute y of area A;, wherey € Y ={1,2,..., m} with m > 1; and
l; denote a spatially extensive attribute of area A;.

Relationship

Letd: Ax A— RT U{0} be the dissimilarity between areas based on the set of at-
tributes Y such that d;; = d(A;, A;) satisfies the conditions d;; > 0,d;; = dj;; and d;; =0
for i, j=1,2,...,n. Distance funtions can also be utilized; i.e., d;; can also satify the
subadditivity, or triangle inequality, condition: d;; < djz + dj; for i, j,k=1,2,...,n.

Let W = (V, E) denote the contiguity graph associated with A such that vertices v; € V
correspond to areas A; € A and edges {v;, v;} € E if and only if areas A; and A; share a
common border. For the max-p-regions model W must be a connected graph.

Feasible Partitions of A

Let P, ={R;, Ry, ..., R,} denote a partition of areas A into p regions with1<p <n
such that:

|R,| >0 for k=12 ..., p;
RNR, =0 for kEk=12....p NE#£E;

Uiz Be = 4;

> I > threshold

{fork:l,Z,...,p,and
AieR,

threshold € R* U {0}|0 < threshold <y, Ali;

© 2011, Wiley Periodicals, Inc.
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FIGURE 1: Example of input data: y = average price, and ! = number of houses.

W(R;) is connected for %k2=1,2,...,p.

Let IT denote the set of all feasible partitions of A.

Evaluation Criterion for a Feasible Partition P, € I1

MR = Z d;j Heterogeneity of region & with R, € P,;
ijiAnAjeRy i<

p
HP,) = Z h(R;)  Total heterogeneity of partition P, € IT.
k=1

The max-p-regions problem may be formulated as:

Determine P; € IT such that | P;| = max(|P,| : P, € I), and
IP,ell: |Py)| = |P;| A H(P,) < H(P)).

Next we present a basic example to illustrate an optimal solution for the max-p-
regions problem. Figure 1 shows a regular lattice with nine square areas which are
grayscale-coded according to y, say the average price of a house in an area. We also have
the number of houses per area as our spatially extensive attribute /. The objective is
(1) to find the maximum number of contiguous regions, p, needed to group the nine areas
in such a way that each region contains at least 120 houses (i.e., threshold = 120); and

© 2011, Wiley Periodicals, Inc.
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TABLE 1: Construction of the Evaluation Criterion H (P;)

Expressions Values
h(Ry = {A1, Az, A3, As, Ag)) dig+diz+dis+dig+dez+dos+dog+das+dset+dse=
50.3 +80.6 +60.7 +100.2 +30.3 +10.4+49.9 +19.9+19.6 +
39.5=4614
h(Ry = (A4, A7, Ag, Ag}) dy7+dsg+dsg+dig+diog+dsg =
69.7+10.3+82+59.4+61.5+2.1=2112
H(Py) = h(Ry) + h(R,) 461.4+2112 = 672.6

(2) to find, within all solutions with p regions, the solution with the least amount of
regional heterogeneity based on y.?

Table 1 presents the components of the evaluation criterion for the optimal partition,
H(P;). According to the definition of the max-p-regions problem, this optimal solution
(P;) implies the following in sequential order.

(i) It is not possible to have more than two regions with at least 120 houses each.

(i1) There is not another feasible solution with two regions with a total regional
heterogeneity, H(P,), lower than 672.6.

The bold borders in Figure 2 outline the resulting regions. The regions capture the
spatial patterns by aggregating areas with similar values for variable y. Finally, both
regions have more than 120 houses each: 148 houses in region R; and 123 in region Rs.

3. LITERATURE REVIEW

In the literature, there are three types methods for designing homogeneous regions.
The first type of method designs the regions in two stages Openshaw (1973); Fischer
(1980). The first of the two stages starts by applying a conventional clustering algorithm
to the areas without taking into account the geographical location of the areas being
aggregated. In this stage, the focus is placed on creating clusters, not regions, of areas
that are homogeneous in terms of a set of attributes, regardless of geography. The second
of the two stages defines regions as subsets of spatially contiguous areas assigned to
the same cluster. With this method the number of resulting regions heavily depends
on the spatial patterns of the attributes used for calculating intraregional homogeneity
Openshaw and Rao (1995).

The second type of method consists of constructing homogeneous regions by including
the x and y coordinates of the centroids of the areas as two additional attributes in
a conventional clustering algorithm Webster and Burrough (1972); Murray and Shyy
(2000). This is an indirect way to force geographically nearby areas to be assigned to the
same cluster. In this case, the resulting regions will tend to be geographically compact and
therefore spatially contiguous. Spatial contiguity in the final regional solution depends
on the weight given to the geographical attributes (x and y coordinates) compared to the
weights given to the other attributes Wise et al. (1997). An increase in the weight of the
geographic coordinate attributes in the clustering procedure will increase the chances
of obtaining spatially contiguous regions; As a trade-off, this increase in the geographic
distance weighting compared to the weighting of the other attributes will detract from
meeting the objective of obtaining intraregional homogeneity for the other attributes.
One of the main challenges when applying this strategy it to decide how geographical and

5 For this example we assume d;; = |y; — y;|; e.g., di» = |350.2 — 400.5| = 50.3.
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FIGURE 2: Optimal solution for a threshold of 120 houses per region.

nongeographical attributes will be combined and weighted Webster and Burrough (1972);
Cliff et al. (1975); Perruchet (1983).6

For this paper, the key problem with the first two types of methods is that they do not
include a procedure for ensuring the spatial contiguity of the regions. In both cases, this
condition must be revised a posteriori. Because of the simplicity of their formulations, a
key strength of these types of methods lies in their ability to handle large numbers of
areas.”

A third type of method for clustering areas, our focus, guarantees spatial contiguity
amongst the areas of each resulting region by explicitly including a spatial constraint
within the regionalization procedure. The advantage of this strategy is that the objectives
of spatial contiguity and intraregional homogeneity do not compete. Information about
the neighboring structure of the set of areas is used only as an input for limiting the
number of feasible solutions, and within this limited number of spatially contiguous
solutions is intraregional homogeneity assessed. There is a wide range of strategies for
guaranteeing spatial contiguity based on information about the neighboring structure.
They can be classified into five categories: (a) Adapted hierarchical clustering algorithms
are where two clusters are merged only if they share a common border Lankford (1969);
Byfuglien and Nordgard (1973); Margules et al. (1985); (b) Seeded regions are where
each region starts growing from an initial area from which other neighboring areas are
attached Openshaw (1977a); (¢) Modification of an initial solution works by moving areas
between regions while preserving spatial contiguity Openshaw and Rao (1995); Ferligoj
and Batagelj (1982); (d) Graph theory-based algorithms are where the areas and their

S Horn (1995) and Martin et al. (2001) point out that the final solution is also sensitive to the
methodology applied to define the centroids of the areas.

"The number of areas to aggregate determines computational time cost and is an important factor
when selecting the aggregation method. See Cliff and Haggett (1970), Cliff et al. (1975), and Keane (1975)
for a discussion on the complexity of spatially constrained clustering.

© 2011, Wiley Periodicals, Inc.
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neighborhood structure are represented as a connected graph that needs to be broken
into connected subgraphs, while maximizing some intraregional homogeneity criterion
Maravalle et al. (1997); Hansen et al. (2003); Assuncéo et al. (2006); and, (e) Formulation of
exact optimization models are where a subset of constraints are responsible for satisfying
the spatial contiguity of each region Murray and Shyy (2000); Duque et al. (2011).8

The use of one method or another is not an arbitrary decision. For those problems
where the shape of the regions should be guided by the spatial distribution of the variables,
the use of conventional clustering with x and y coordinates are not appropriate because
they always tend to generate circular (compact) regions. Also, problems that do not re-
quire nested aggregations at different scales will not ensure optimality by using adapted
hierarchical clustering algorithms because with these methods the solution at one scale is
conditioned to the solutions obtained at lower scales Bunge (1966). The method proposed
in this paper satisfies the contiguity constraint in two ways. First, in the exact formu-
lation we design constraints that borrow concepts from graph partitioning. And second,
for the solution method, we design an algorithm that constructs feasible solutions, based
on the seeded regions strategies, which are iteratively modified while searching for im-
provements on the evaluation criterion.

4. THE EXACT FORMULATION OF THE MAX-P-REGIONS MODEL
Parameters:
i, I = Index and set of areas, I = {1,...,n};
k = index of potential regions, £ = {1, ...,n};
¢ = index of contiguity order,c = {0, ..., q},withg = (n — 1);

Wi — 1, if areas i and j share a border, with i, j € I and i # j
Y 710, otherwise;
N; = {jlw;; = 1}, the set of areas that are adjacent to area i;
d;; = dissimilarity relationships between areas
tand j,withi,jelandi < j;
h =1+ [log(}_; > ;;.;dij)], which is the number of digits of the
floor function of ), >~ dij, with i, j € I
l; = spatially extensive attribute value of area i, with i € I,
threshold

minimum value for attribute [ at regional
scale.

Decision variables:

P 1, ifareasi and j belong to the same region %, with i < j
710, otherwise;

e { 1, ifareasi is assigned to region % in order ¢
12

X = .
0, otherwise.

Minimize:

(1) Z= (- -y xfo) « 10"+ 3 " dyjt;;.

k=1 i=1 i jlj>i

8 These methods for ensuring spatial contiguity are required in a wide range of related problems
like political districting Williams (1995), school districting Caro et al. (2004), sales districting Zoltners and
Sinha (1983), among others.

© 2011, Wiley Periodicals, Inc.
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Subject to:

(2) inkosl VeE=1,...,n

q
3) YNy ak=1 Vi=1,...,n

k=1 ¢=0
(4) xfc§Zx?(c_1) Vi=1,...,m;Vk=1,...,n;Ve=1,...,q;
JeN;
n q n
(5) > "« l; > threshold x » VE=1,....m
i=1 ¢=0 i=1
q q
(6) b=y a4y 2 -1 Vij=1...ni<j;Vk=1..m
c=0 c=0
7) xlkce{O,l} Vi=1,...,n; Vk=1,...,n; V¢ =0,...,q;
(8) 4; €1{0,1} Vi,j=1,...,nji < J.

In this formulation potential regions are represented by an index k2. We call then
“potential regions” because we do not know a priori how many regions will be created.
When a region k is created it starts from a “root” area i, which is an area assigned to
region £ in order zero (i.e., Xf"o). Each region contains one and only one root area. The
other areas are assigned to one root according to an ordering system that ensures that
each area either is adjacent to the root area, or next to an area that is assigned to the same
region with a smaller order number. The contiguity conditions in this model represent
an extension of the ordered-area assignment conditions proposed by Cova and Church
(2000), who developed such conditions to enforce contiguity in a site design problem.

The mixed integer programming (MIP) model is formulated as a minimization prob-
lem with an objective function, (1), that comprises two terms, one term that controls
the number of regions, p, and a second term that controls the total heterogeneity,
H(P,). The first term is obtained by adding the number of areas designated as root
areas (X™), and the second term adds the pairwise dissimilarities between areas as-
signed to the same region. Since the objective function is formulated as a minimization
problem, we multiply the first term by minus one.

These two terms are merged into one single value, but not in the usual way (i.e., by
multiplying each term by a weight). Instead, we merge them in such a way that there
is an implicit hierarchy where the number of p regions comes first than the goal of re-
ducing total heterogeneity. We achieve this hierarchy by multiplying the first term by
a scaling factor A =1+ [log(}_; Y j1j=i &j)]. For p regions the objective functions starts
at —p* 10", This value increases when we add the total heterogeneity, but % is big
enough that, regardless the value of this heterogeneity, the objective function will never
reach —(p — 1)  10". This formulation has three implications:

e If the algorithm finds a feasible solution with a higher value of p, the improvement in
the objective function will always be big enough that this new solution will be preferred
over any other solution with a smaller value of p.

© 2011, Wiley Periodicals, Inc.
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e For the same value of p, solutions with lower heterogeneity will be preferred over
solutions with higher heterogeneity.

e The third implication is derived from the two first, and it is that we force the model to
compare only total heterogeneities between solutions with the same number of regions.
Comparing heterogeneities between solutions with different number of regions would
be an unfair comparison.

Constraints (2) establish that a region & should not have more than one core area. A
root area for a region has a defined order of zero (c = 0). Constraints (3) require that each
area be assigned to exactly one region k£ and one contiguity order c¢. Constraints (4) require
that area i be assigned to region % at order c if and only if an area j exist, in the adjacent
neighborhood of i, that is assigned to the same region % in order ¢ — 1. Constraints (5)
ensure that when a region is created, the value of the spatially extensive attribute in that
region will be above the predefined TH. Constraints (6) select the pairwise dissimilarities
that must be taken into account for calculating the total heterogeneity. Thus, the binary
variable #; = 1 whenever areas i and j are assigned to the same region k&, regardless of
the order in which they are assigned. Finally, constraint (7) and (8) guarantee variable
integrity.

In this formulation we do not impose any constraint on the shape of the regions. Our
formulation even allows for regions in the solution that can appear as concentric rings
around, for example, a Central Business District.

The MIP formulation of the max-p-regions model is computationally expensive. It
has 3n+ (n— 1n? + n% constraints and (n — 1)n? + ”22’ " yariables, which quickly make
it intractable as the number of areas increases. However, there are some options that can
be considered to reduce the size of the problem:

1.Each area i with [; > threshold can be assigned to a different region %2 by adding
constraints of the type X** = 1.

2. The upper limit of the indexes % and ¢ can be reduced, because they were set for very
extreme cases. Currently we do not have the decision rules to define how much the
upper limits of £ and ¢ can be reduced without affecting optimality.

3.1t is clear that, for a given solution, the objective function will not be affected if
we modify the index of the region, or the order of assignment, as long as the set of
areas per region is not modified. This implies that, when using the branch and bound
method, the optimal solution will exist in multiple branches of the solution tree. Thus,
a Depth-first branching direction may reduce the solution time.

4.1If we take into account that any area can be the root of its region, then we can
apply the “1 in 1” formulation proposed by Rosing and ReVelle (1986) within the
context of flow capturing model. According to this formulation, a single area i can
be arbitrarily assigned to one specific region without degrading the problem or
the objective function. Thus, we can reduce computation time by adding the con-
straint Xfo without affecting optimality.

To illustrate the complexity of the max-p-regions we solved 19 problems with differ-
ent number of areas (n) and threshold values (¢hreshold). The attributes y, from which
the dissimilarities d;; are calculated, were simulated as spatial autoregressive (SAR) pro-
cesses with a spatial autocorrelation parameter p = 0.8, mean = 0, and the rook criterion
of contiguity for constructing the spatial weights. The spatially extensive attributes [
where generated from a discrete uniform distribution between 10 and 15. Table 2 sum-
marizes computational results. Only four problems were solved to optimality, and feasible
solutions were obtained for six problems. For the other nine problems CPLEX did not find

© 2011, Wiley Periodicals, Inc.
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TABLE 2: Computational Experience with CPLEX

Problem n Threshold Solution P Time (sec.)
1 9 28 —2.931-102 3 0.33
2 9 38 —1.877-102 2 0.19
3 16 51 —2.965 - 10° 3 1257.25
4 16 68 —1.948.10° 2 198.86
5 25 52 —6.069 - 10° 6 t
6 25 79 —3.984-10° 3 t
7 25 105 —2.920 - 10° 3 T
8 36 53 —9.094 - 10* 7 t
9 36 68 —17.087 - 10* 5 T

10 36 120 — — t

11 49 54 — — t

12 49 65 - - T

13 49 82 — — t

14 49 109 —6.027 - 10* 6 T

15 64 52 — — t

16 64 60 — — t

17 64 64 — — T

18 64 84 — — t

19 64 140 - — T

* Optimal (by CPLEX).
1 Run stopped after four hours.
— No solution found.

a feasible solution after four hours. It is clear that with the commonly available computa-
tional power we currently need to use heuristics to solve meaningfully large problems.’

5. HEURISTIC SOLUTION METHODS

In this section, we propose a heuristic solution for the max-p-regions problem. The
heuristic is presented in Pseudo-code 1 and comprises two phases, a construction phase
and a local search phase. The construction phase generates a set of feasible solutions, and
the local search phase applies iterative modifications to those feasible solutions in order
to improve the evaluation criterion. At the end, the heuristic returns the best solution
found.

Pseudo-code 1: MAX-p-REGIONS

A : Set of areas,

[ : Spatially extensive attribute of areas,

d : Pairwise dissimilarities between areas,

W : Neighborhoods,

threshold : Constraint on attribute [ at regional level.

9 Results are based on using ILOG CPLEX 11.2 executed on a Dell Precision T3400 computer running
the Windows XP-64bits operating system equipped with 8 GB RAM and a 2.99 GHz Intel Core 2 Extreme
processor.

© 2011, Wiley Periodicals, Inc.
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Pseudo-code 1:
P;je“ = (), best partition.

het = oo

[T =@, set of feasible partitions.

W = ¢, set of partitions before enclaves assignment.
max P = 0, maximum number of regions.

Construction Phase:
fori =12, - maxitr

s, e, A = GrowRegions(A, [, d, W, threshold)
p = ||, number of regions in partition ¢
if p > max P
v =1
do then {max P=p
if p = max P
then {V =W Uy
if p < maxP
then {pass
for | in ¥
do Pfeasitle — AgsignEnclaves(s, A%, ¢, d, W)
m=1nuv Pfeasible

Local Search Phase:
for Pfeasible i 7
peurrent — LocalSearch(Pfeasible)
if H(P;We”t) < het
_ current
the het = H(P} )

n best current
PP - PP

do

return Pfje“

Construction Phase

The construction of a feasible solution is divided in two phases: growing phase (see
Pseudo-code 2), and enclaves assignment (see Pseudo-code 3). During the growing phase
the algorithm selects at random an unassigned area, which is the “seed area” of a growing
region. Then, neighboring unassigned areas are added to the initial seed until the region
reaches the minimum threshold value.!® Next, the algorithm selects a new seed area to
start growing a new region. This process is repeated until it is not possible to grow new
regions that satisfy the threshold value. Those areas that are not assigned to a region are
known as “enclaves.” At the end of the growing phase, the algorithm finished with a set
of partial solutions where each solution is composed by a set of growing regions and a set
of enclave areas.

The number of feasible growing regions may change from run to run. For this
reason the algorithm repeats this procedure multiple times (maxitr) and keeps only
those solutions where the number of growing regions is equal to the maximum number

10 The strategy of creating regions from the selection of an initial area appeared in the early-1960s
with Vickrey (1961) for solving districting problems. Variations of this methodology have been proposed by
Thoreson and Littschwager (1967), Gearhart and Liittschwager (1969), Taylor (1973), Openshaw (1977a,b),
and Rossiter and Johnston (1981).

© 2011, Wiley Periodicals, Inc.
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of regions obtained in prior iterations. Each partial solution is then passed to the
process of enclaves assignment. In this phase each enclave area must be assigned to one
neighboring growing region according to a measure of similarity.!! Once all the partial
solutions have passed through the enclave assignment process, the algorithm has a set
of feasible solutions, all of them with the same number of regions.

Pseudo-code 2: GROWREGIONS
Al ,d, W, threshold

Comment: Grow regions from initial seeds such that the value of attribute /
in each region is above threshold.

W =, set of partitions before enclaves assignment.
e = (), set of enclave areas.

A" = A, set of unassigned areas.

A = (), set of assigned areas.

while A“ £

A, = select, at random, one area from A“.

A* = A" — { A}, remove area A;, from set A”.
A% = A% U {A.}, add area A, to set A?.

if I, > threshold

then R, = {A;}, area A, becomes a region by itself.
V¥ = V¥ U {R;}, add region R}, to partition V.
if [, < threshold
R, = {A;}, start a growing region seeded at area A;.
N = neighbors(4;) — A%, set of neighboring unassigned
areas of Ay.
L =1, value of attribute [ in area A,.
feasible = 1
while T < threshold
ifN#0Q
A, =area in N that minimizes the
do greedy adaptative function g(4;) =
R = 7 i)
r = 1y U {4
then then | N — (N — {A1]) Uneighbors(4) — A°
T=T+I;
do At = A% — {A})
A = A% U {A;}
if N=¢ and T < threshold
e=c¢UR,
feasible =0
then { A= A“UR,
A = A — R,
break, leave the while loop.
if feasible = 1
then ¥ = ¥ U {R;}

return ¥, g, A¢

1 This implies that the enclave assignment process do not modify the number of regions. It just
ensures the exhaustive assignment of areas to regions.
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Pseudo-code 3: ASSIGNENCLAVES
Y, A% e, d W

Comment: Assign each enclave ine to one growing region in partition .

while € # ¢

A; = select an area A; in € that shares aborder with at least one area
3 a

n= rgé‘il(?n's m C ¢ that share border witharea A;.

R, =region R, Cm that minimizes thegreedy adaptative function

do 8A, Ry) =3 icp dij.

R" = R, U{A;}

Y = — {R,} U{R"}, update region Fj, in .

A® = A" U {A;}, update set of assigned areas.

€ =& — A;, update set of enclaves.

Pfeasible — y; at this point all theareas have been assigned to a region.

return Pfeasible

Local Search Phase

Each one of these feasible solutions generated during the construction phase is then
improved by applying a local search algorithm. The local search algorithm iteratively
modifies the solution while seeking for improvements on the evaluation criterion. The
set of new solutions that can be obtained from a current solution is known as the set of
neighboring solutions. There exist several ways to create this set: (a) moving one area
from its regions to a neighboring region, (b) swapping areas between two regions, (c)
merging two regions and splitting them into two new regions, or (d) combining two fea-
sible solutions into a new different feasible solution using genetic algorithms operators.
Regardless of the strategy for creating neighboring solution, the conditions is that each
neighboring solution must generate a feasible solution.'? In this paper, we define a neigh-
boring solution as the new feasible solution obtained by moving one area from its current
region (donor region) to another neighboring region (recipient region). This neighboring
function has been applied by Bozkaya et al. (2003), Openshaw and Rao (1995), Ricca and
Simeone (2008), Blais et al. (2003), and Bong and Wang (2004) for different types of spatial
clustering problems.

We consider three different local search algorithms with the aim of deter-
mining which one performs better for the max-p-regions problem: Simulated An-
nealing (SA) Kirkpatrick et al. (1983), Tabu Search Glover (1977) and Greedy
Algorithm.

Simulated Annealing

SA is described in Pseudo-code 4. This algorithm starts from an initial feasible so-
lution. Then, a neighboring feasible solution is selected at random. If the neighboring
solution is better than the current solutions, then the move is accepted. If the neighboring

12 See Nagel (1965), Sammons (1978) and Horn (1995) for a review on the different possibilities to
generate neighboring solutions within the context of spatial clustering.
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solution does not improve the current solution, then the transition to the new solution is
allowed with an acceptance probability given by the Boltzmann’s equation, p = e 2#/T,
where AH is the change in the evaluation criterion, and 7 is the current temperature.
At each iteration the temperature T gradually decreases at a given cooling rate a. Thus,
as the algorithm progresses probability of accepting a nonimproving move approaches to
zero. The algorithm stops when T reaches a predefined value €. The key parameter in this
algorithm is the cooling rate «.

Pseudo-code 4: LOCAL SEARCH: SIMULATEDANNEALING
Pfeasible Tb o€

P = Pfeasible - Best ]ocal optimum

pourrent — Ppfeasible . Cyrrent solucion

T = Tp, Initial temperature

while T > €

Select at random a feasible neighboring solution P;** of PI‘;W@”‘
if H(P*") < H(P,)

P, = Py

then Pcurrent _ Pnew
do p —p
else if e /T > random

current __ pnew
then P =Py

T =aoT

return (PI’J)

Tabu Search Algorithm

The Tabu search algorithm is presented in Pseudo-code 5. This metaheuristic is
provided with a good capacity of escaping from local optimal solution by allowing a
temporal worsening of the evaluation criterion with the hope of discovering a new so-
lution better that the best solution obtained so far. It starts from an initial feasible
solution. From this point the algorithm moves to the best neighboring solution even if
this move causes a deterioration of the evaluation criterion (total heterogeneity). To pre-
vent cycles, the reverse move is forbidden, or tabu, for a predefined number of iterations
(lengthTabu). A tabu move is allowed only if the move yields a solution better than the
best obtained so far (aspirational criterion). The algorithm stops when a total of convTabu
iterations have been performed without improving the aspirational criterion. According
to the literature, the most critical parameter in this heuristic is the length of the tabu list,
lengthTabu.

© 2011, Wiley Periodicals, Inc.



DUQUE, ANSELIN AND REY: THE MAX-P-REGIONS PROBLEM 411

Pseudo-code 5: LOCAL SEARCH: TABUSEARCH
Ppfeasible JongthTabu, convTabu

__ pcurrent __ ibl
P}/} — Pll;u rent _ Pfeasz e
tabuList = {}
c=1

while ¢ < convTabu

N = Set of feasible neighbors of Pg**"
iftN=0¢
then {c = convTabu
for PI’;‘”" in N
if P*" ¢ tabuList
if H(P)*") < H(P))
PI’) — P;)Lew
Plc)urrent — ngw
then {c=1
then N=1{
tabuList.add(P;*")
dO P;urrent — Pgew
else {c=c+1
else
do N=1
if H(P)*") < H(P))
P;urrent — P;’wu,
then {¢=1
else N={
tabuList.add(P}*")
N=N-Pp"
else tabuList.pop()

return (PI’,)

Greedy Algorithm

The Greedy algorithm, described in Pseudo-code 6, starts from an initial feasible
solution, and selects a neighboring solution at random. The neighboring solution is allowed
only if it improves the current solution. The algorithm stops when there is no neighboring
solution that improves the current solution. The Greedy algorithm is fast but it may easily
get trapped into a local optimum.
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Pseudo-code 6: LOCAL SEARCH: GREEDY

Pfeasible
P = Pfeasible
p
flag=1
while flag
N = Set of feasible neighbors of P, that improve the solution
do ifN#Q
then {PI; = Randomly selects an element of N
else {flag=0

return (PI;)

Two are the main challenges in the application of local search algorithms to the
problem of spatial clustering: (a) to avoid getting trapped in a local optimal solution, and
(b) to find feasible neighboring solutions efficiently. However, these techniques have been
widely applied in other problems that impose spatial contiguity constraint. For example,
SA has been applied in political districting by Browdy (1990), Macmillan and Pierce
(1994), Macmillan (2001), and Ricca and Simeone (2008); in zone design by Openshaw
and Rao (1995); and in police districting by D’amico et al. (2002). Tabu search as been
applied in political districting by Bozkaya et al. (2003), Bong and Wang (2004), and
Ricca and Simeone (2008); in zone design by Openshaw and Rao (1995); and in home care
districting by Blais et al. (2003). And the greedy algorithm has been applied in constrained
clustering by Bodin (1973), Fischer (1980), and Ferligoj and Batagelj (1982); in political
districting by Nagel (1965), Liittschwager (1973), Moshman and Kokiko (1973), Horn
(1995), Ricca and Simeone (2008), and Yamada (2009); and in zone design by Openshaw
(1977a), and Openshaw and Rao (1995).

Computational Experiments

In this section, we study the performance of the three local search algorithms pre-
sented above. Table 3 presents the characteristics of the data set utilized in the experi-
ments. The irregular lattices were obtained from the sample data sets available at the
GeoDa Center for Geospatial Analysis and Computation.!? We used two different values
for p, 0.6 and 0.9, in order to evaluate whether there is a change in the performance of
the algorithms at different levels of spatial dependence.

Table 4 presents the parameters we use for the local search algorithms. In both
algorithms we use different values for the key parameters: in SA we use two different
values for the cooling rate (a), and in Tabu Search we use three different values for the
length of the tabu list. This gives a total of six algorithms: Greedy, SA-0.9, SA-0.998,
Tabu-10, Tabu-24, and Tabu-85. All the values for the parameters are based on previous
experiments presented in Rios-Mercado and Fernandez (2009), Ricca and Simeone (2008),
Bong and Wang (2004), Blais et al. (2003), Bozkaya et al. (2003), D’amico et al. (2002),
Macmillan (2001), Openshaw and Rao (1995), Macmillan and Pierce (1994), and Browdy
(1990).

In order to make the results comparable, we generate an initial feasible solution
at random for each combination of lattice, p, and threshold. Then, we run the six local
search algorithm with the same starting solution. This process is repeated 10 times with

13 http://geodacenter.asu.edu/sdata.
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TABLE 3: Characteristics of the Data Set

Characteristic Values

Lattices regular 20x 20 (n = 400)
regular 33x33 (n = 1,056)
regular 55x56 (n = 3,080)
Sacramento census tracks (n = 403)
Colombian municipalities (n = 1,068)
U.S. census tracks (n = 3,085)

Neighborhoods type rook

y SAR (p = 0.6) and SAR (p = 0.9)
[ Discrete Uniform [0,100]
threshold (TH) 100, 300, and 500

TABLE 4: Parameters for Local Search Algorithms

Simulated Annealing

Initial temperature (7p) 1

Cooling rate (a) 0.9 and 0.998

Final temperature (e) 0.0001
Tabu Search

Tabu list length 10, 24, and 85

Maximum number of nonimproving moves 230 * sqrt(p)

different starting solutions. Thus, we solve a total of 2,160 problems (6 lattices x 2 values
of p x 3 Threshold values x 6 algorithms x 10 repetitions).

Our results are presented in tables 5, 6, and 7. Each cell summarizes the results of
solving the ten problems. Table 5 reports the number of times that each algorithm reached
the best known solution. Table 6 reports the average reduction of the evaluation criterion
(total heterogeneity), calculated as [H(Pitialy — H(Pfinaly] H(P"4ia)] where H(Pmitial)
is the total heterogeneity of the initial feasible solution, and H(P/"%) is the total het-
erogeneity at the end of the local search. Table 7 reports the average running times in
seconds.

The results in Table 5 show that Tabu-85 reached the best known solution 71.11
percent of the cases, follow by Tabu-24 with 23.61 percent, Tabu-10 with 16.94 percent. The
SA-0.998 and Greedy algorithms are significantly inferior with an 0.83 percent success
rate, followed by SA-0.9 with 0.56 percent. Our results suggest that the larger the length
of the tabu list, the higher the possibilities are to get the best solution. This finding is in
line with Bozkaya et al. (2003) who found the best performance of Tabu Search for a list
length of between 80 and 100. It is also important to note that longer tabu lists do not
imply a significant change in the running times.

A comparison of SA with Tabu Search results in tables 6 and 7 shows that, on average,
to get an additional reduction of 0.73 percent in the total heterogeneity using Tabu Search
causes the running time to an increase by a factor of 4.84. Depending on the context of
the application, this trade-off can be very expensive.

Contrary to our expectations, there is not a significant difference in the performance
of the algorithms at different levels of spatial dependence; i.e., having clearer spatial
patterns neither helps the algorithms to converge faster nor to reach a higher reduction
of the initial objective function value. This finding implies that it is not necessary to con-
sider the level of spatial dependence of the variables in y when calibrating the parameters
of the algorithms.
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TABLE 5: Number of Times that Each Algorithm Reached the Best Known Solution

p = 0.6 p =09
Heuristic TH =100 TH =300 TH =500 TH =100 TH =300 TH =500
Regular lattice n = 400 (20x20)
Greedy 0 0 0 0 1 1
SA-0.9 0 0 0 0 1 1
SA-0.998 0 0 0 0 1 1
Tabu-10 4 1 7 3 2 6
Tabu-24 6 4 3 4 5 3
Tabu-85 1 6 0 4 4 2
Sacramento census tracks n = 403
Greedy 1 0 0 0 0 0
SA-0.9 0 0 0 0 0 0
SA-0.998 1 0 0 0 0 0
Tabu-10 4 3 4 6 3 1
Tabu-24 2 2 4 4 2 4
Tabu-85 6 6 4 3 6 6
Regular lattice n = 1,056 (33x33)
Greedy 0 0 0 0 0 0
SA-0.9 0 0 0 0 0 0
SA-0.998 0 0 0 0 0 0
Tabu-10 0 0 0 1 0 2
Tabu-24 2 0 1 3 1 5
Tabu-85 8 10 9 9 9 6
Colombia municipalities n = 1, 068
Greedy 0 0 0 0 0 0
SA-0.9 0 0 0 0 0 0
SA-0.998 0 0 0 0 0 0
Tabu-10 1 2 0 0 1 2
Tabu-24 2 3 2 1 1 2
Tabu-85 7 9 9 9 8 8
Regular lattice n = 3,080 (55x56)
Greedy 0 0 0 0 0 0
SA-0.9 0 0 0 0 0 0
SA-0.998 0 0 0 0 0 0
Tabu-10 3 0 1 2 1 0
Tabu-24 3 0 5 1 1 1
Tabu-85 7 10 7 10 10 9
U.S. counties n = 3,085
Greedy 0 0 0 0 0 0
SA-0.9 0 0 0 0 0 0
SA-0.998 0 0 0 0 0 0
Tabu-10 0 0 0 0 0 1
Tabu-24 2 1 2 2 1 0
Tabu-85 8 9 8 10 10 9

Differences between regular and irregular lattices have a significant impact on the
evaluation criterion and solution times. For irregular lattices, we found a 12.84 percent
reduction in the capacity of the algorithms to reduce the evaluation criterion (Table 6).
However, the algorithms converged 8.77 percent faster with irregular lattices when com-
pared with regular (Table 7).
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TABLE 6: Average Reduction of the Evaluation Criterion (%)

p=06 p=09
Heuristic TH=100 TH =300 TH =500 TH=100 TH =300 TH =500
Regular lattice n = 400 (20x20)
Greedy 6.11 2.43 1.19 5.52 1.96 1.07
SA-0.9 6.58 2.55 1.21 5.62 1.98 1.08
SA-0.998 6.37 2.53 1.21 5.62 1.98 1.08
Tabu-10 8.67 3.13 2.00 6.52 2.54 1.93
Tabu-24 8.57 3.32 1.90 6.90 2.71 1.86
Tabu-85 7.32 3.46 1.29 6.53 2.52 1.59
Sacramento census tracks n = 403
Greedy 4.25 1.22 0.90 4.37 1.85 1.10
SA-0.9 4.48 1.64 0.94 4.49 1.85 1.28
SA-0.998 4.37 1.52 0.93 4.46 2.02 1.26
Tabu-10 5.62 2.44 1.67 6.36 2.41 1.50
Tabu-24 5.77 2.56 1.85 6.42 2.44 1.89
Tabu-85 5.90 2.79 1.76 6.17 2.62 1.99
Regular lattice n = 1,056 (33x33)
Greedy 4.29 1.01 0.97 4.48 0.62 1.20
SA-0.9 8.57 3.47 1.57 7.66 3.30 1.71
SA-0.998 5.78 2.36 1.21 5.92 1.87 1.41
Tabu-10 8.42 3.17 1.74 8.01 3.12 2.00
Tabu-24 8.57 3.41 1.84 8.20 3.18 2.11
Tabu-85 8.81 3.69 2.02 8.41 3.39 2.22
Colombia municipalities n = 1,068
Greedy 3.82 0.73 0.51 3.50 0.97 0.77
SA-0.9 7.26 2.49 1.91 6.75 2.43 1.96
SA-0.998 4.92 1.61 1.16 4.76 1.41 1.24
Tabu-10 6.93 2.25 1.65 6.59 2.25 1.78
Tabu-24 7.04 2.44 1.82 6.76 2.29 1.85
Tabu-85 7.40 2.60 2.08 6.96 2.51 2.08
Regular lattice n = 3,080 (55x56)
Greedy 2.93 0.41 0.22 3.30 0.60 0.30
SA-0.9 8.19 3.00 2.07 8.04 3.18 1.97
SA-0.998 6.32 1.92 1.35 6.14 2.14 1.19
Tabu-10 8.00 2.91 1.96 8.00 3.09 1.86
Tabu-24 8.06 2.95 2.00 8.01 3.15 1.88
Tabu-85 8.20 3.01 2.09 8.06 3.19 1.98
U.S. counties n = 3,085
Greedy 3.06 0.69 0.43 3.36 0.86 0.41
SA-0.9 7.07 2.53 1.51 6.78 2.54 1.47
SA-0.998 5.32 1.69 0.91 4.90 1.54 0.83
Tabu-10 6.95 2.46 1.41 6.71 2.44 1.40
Tabu-24 7.01 2.50 1.44 6.73 2.47 1.41
Tabu-85 7.08 2.54 1.52 6.79 2.55 1.48

Table 7 shows that increasing the T'H from 100 to 500, yields a 34.78 percent reduction
in running time for Tabu Search. This effect is the opposite for the other two algorithms:
SA produces increases in running time by an average of 84.45 percent, and the Greedy
algorithm multiplies the average running time by a factor of 2.13.
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TABLE 7: Average Running Time (seconds)

p=06 p=09
Heuristic TH =100 TH =300 TH =500 TH=100 TH =300 TH =500
Regular lattice n = 400 (20x20)
Greedy 1.73 2.10 2.90 1.42 2.06 2.70
SA-0.9 1.69 3.91 3.68 1.43 3.04 3.84
SA-0.998 60.80 194.91 188.34 73.28 156.81 194.54
Tabu-10 282.95 174.28 116.10 224.44 152.48 135.75
Tabu-24 191.81 149.28 150.33 147.16 108.75 115.17
Tabu-85 207.81 220.40 402.04 186.51 169.44 297.86
Sacramento census tracks n = 403
Greedy 1.46 2.33 2.08 1.36 1.70 2.19
SA-0.9 2.63 4.03 3.93 2.19 3.68 4.02
SA-0.998 109.19 183.87 201.02 96.48 183.23 203.39
Tabu-10 197.17 115.26 86.97 206.24 130.08 93.65
Tabu-24 170.32 103.59 93.02 169.71 106.49 84.42
Tabu-85 148.63 167.09 153.94 214.57 115.52 149.73
Regular lattice n = 1,056 (33x33)
Greedy 16.48 47.46 50.37 13.41 47.75 36.39
SA-0.9 41.56 48.43 30.21 28.71 60.32 29.60
SA-0.998 441.89 928.46 924.62 394.34 982.90 860.69
Tabu-10 3,530.05 2,509.21 1,952.74 3,147.65 2,672.26 2,018.99
Tabu-24 3,328.18 2,332.97 1,724.53 2,970.06 2,553.66 1,617.56
Tabu-85 2,973.35 1,931.83 1,262.03 2,227.80 2,207.33 1,114.55
Colombia municipalities n = 1,068
Greedy 21.80 42.81 58.81 23.43 41.06 64.70
SA-0.9 31.54 37.33 39.56 30.25 39.09 40.61
SA-0.998 519.97 987.90 1,351.52 575.65 1,175.31 1,337.92
Tabu-10 2,090.06 1,434.37 1,196.22 2,183.32 1,5630.76 1,350.57
Tabu-24 2,006.82 1,347.62 1,141.98 2,063.85 1,453.22 1,270.22
Tabu-85 2,197.85 1,311.72 1,117.74 1,823.41 1,418.37 1,150.04
Regular lattice n = 3,080 (55x56)
Greedy 352.42 1,978.78 2,575.65 669.12 2,375.12 2,904.57
SA-0.9 670.17 742.92 774.82 646.77 781.64 768.19

SA-0.998 4,580.04 10,109.48 9,757.43 4,982.57 11,094.88 10,080.38
Tabu-10 65,327.64 46,601.99 40,360.95 62,786.81 47,136.13 38,793.53
Tabu-24 62,771.18 43,679.58 37,356.54 59,665.65 44,649.17 36,327.65
Tabu-85 61,225.69 42,049.43 35,714.13 59,791.21 45,265.58 39,431.93
U.S. counties n = 3,085
Greedy 661.42 2,893.20 3,118.18 860.95 3,390.53 2,905.46
SA-0.9 399.73 451.83 435.96 452.39 527.75 496.55
SA-0.998 5,812.57 12,911.45 12,637.12 6,837.01 14,380.63 13,403.45
Tabu-10 37,339.67 25,348.69 20,360.10 42,089.08 30,138.07 23,410.21
Tabu-24 35,755.91 24,305.28 19,247.84 40,838.94 29,216.97 22,186.28
Tabu-85 35,091.20 24,738.21 18,973.94 40,191.39 30,613.88 23,694.65

6. CONCLUSIONS AND FUTURE RESEARCH

In this paper we presented a new type of constrained clustering problem that we
coined as the max-p-regions problem. This problem involves the aggregation of small
areas into the maximum number of homogeneous regions such that the regional value of
a spatially extensive attribute is above a minimum TH.
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There are many potential applications of our model. For example, the max-p can be
used in the design of study regions that allow valid statistical inference in the presence
of spatial heteroskedasticity such as in spatial epidemiology studies that require a fair
comparison of rate estimates across regions. In addition, our approach can be explored
as a way to control for spurious spatial autocorrelation while minimizing the aggregation
bias.

Classical problems in the literature can be also reformulated as a max-p-regions
problem. For example, all the formulations on police districting and sales territory align-
ment assume that the headquarters or stores are already located in the territory. This may
be an overly strict assumption. For instance, it is plausible that a researcher is confronted
with a situation where those facilities do not yet exist or they need to be reallocated. Then,
the max-p-regions model can be used to aggregate the areas into regions such that the
regions are homogeneous in terms of customer characteristics or crime types, and each
region contains a minimum amount of potential customers or emergency calls. Next, once
the regions are designed, one can decide the best location of facility within each region at
a subsequent stage.
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