
Modern Spatial Econometrics in Practice:

A Guide to GeoDa, GeoDaSpace and PySAL

Luc Anselin Sergio J. Rey

November 10, 2014

DRAFT – Do Not Quote

Copyright © 2014 Luc Anselin and Sergio J. Rey, All Rights

Reserved

Chapter 3

Spatial Weights:
Contiguity

Spatial weights are a key component in any cross-sectional analysis of
spatial dependence. They are an essential element in the specification
of the spatial variables in a model, such as the spatially lagged depen-
dent variable and spatially lagged explanatory variables, as shown in
Equations 1.1 and 1.2 for the spatial lag and spatial error model.

Formally, the weights express the neighbor structure between the
observations as a n × n matrix W in which the elements wij of the
matrix are the spatial weights:

W =
���������

w11 w12 . . . w1n

w21 w22 . . . w2n⋮ ⋮ � ⋮
wn1 wn2 . . . wnn

���������
.

The spatial weights wij are non-zero when i and j are neighbors, and
zero otherwise. By convention, the self-neighbor relation is excluded,
so that the diagonal elements of W are zero, wii = 0.

In its most simple form, the spatial weights matrix expresses the
existence of a neighbor relation in binary form, with weights 1 and 0.
Formally, each spatial unit is represented in the matrix by a row i, and
the potential neighbors by the columns j, with j ≠ i. The existence
of a neighbor relation between the spatial unit corresponding to row i
and the one matching column j follows then as wij =Wi,j = 1.

There are many criteria on which the construction of the spatial
weights can be based. A comprehensive discussion is beyond the cur-
rent scope. We focus on the two most common operational approaches
and distinguish between a neighborhood relation based on the notion
of contiguity and one derived from distance measures. Intrinsically,

39

40 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

contiguity is most appropriate for geographic data expressed as poly-
gons (so-called areal units), whereas distance is suited for point data,
although in practice the distinction is not that absolute. In fact, poly-
gon data can be represented by their centroid or central point, which
then lends itself to the computation of distance. Similarly, a tessel-
lation can be constructed for point data (e.g., Thiessen polygons),
which allows for the determination of contiguity relationships between
the polygons in the tesselation.

In this Chapter, we restrict our attention to contiguity weights. We
first define some basic concepts and then proceed with a description
of the weights functionality in each of GeoDa, GeoDaSpace and PySAL.
Distance-based weights are covered in Chapter 4.

3.1 Basic Principles

3.1.1 Rook and Queen Contiguity

Contiguity means that two spatial units share a common border of
non-zero length. Operationally, we can further distinguish between
a rook and a queen criterion of contiguity, in analogy to the moves
allowed for the such-named pieces on a chess board. The rook criterion
defines neighbors by the existence of a common edge between two
spatial units. The queen criterion is somewhat more encompassing
and defines neighbors as spatial units sharing a common edge or a
common vertex.1 Therefore, the number of neighbors according to the
queen criterion will always be at least as large as for the rook criterion.

In practice, the construction of the spatial weights from the ge-
ometry of the data cannot be done by visual inspection or manual
calculation, except in the most trivial of situations. To assess whether
two polygons are contiguous requires the use of explicit spatial data
structures to deal with the location and arrangement of the polygons.

The way in which contiguity between polygons can be assessed in
a GIS depends on its internal representation of the geometric features.
The easiest situation is when the data representation in the GIS al-
ready captures topology, e.g., by using a node-arc-area approach or
a connected edge list to store the information about the arrangement
of the spatial features, as is the case in some of the spatial databases
supported by GeoDa. However, in each of our three software implemen-
tations, the polygons are stored internally and the contiguity relations
need to be constructed from an explicit matching of the boundary
information for each pair of polygons. A brute force comparison of

1A third notion, referred to as bishop contiguity, is based on the existence of
common vertices between two spatial units. It is seldom used in practice, and will
not be considered here.

3.1. BASIC PRINCIPLES 41

all pairs is highly ine�cient and therefore refined geocomputational
techniques are implemented.

It is important to keep in mind that the spatial weights are crit-
ically dependent on the quality of the GIS from which they are con-
structed. Problems with the topology in the GIS (e.g., slivers) will
result in inaccuracies for the neighbor relations included in the spa-
tial weights. In practice, it is essential to check the characteristics of
the weights for any evidence of problems (see Section 3.1.5). When
problems are detected, the solution is to go back to the GIS and fix or
clean the topology of the data set. This is a routine operation in most
GIS software.

3.1.2 Block Weights

A slightly di↵erent concept of neighbors follows when a block structure
is imposed, in which all observations in the same block are considered
to be neighbors. This is an example of a hierarchical spatial model,
in which all units that share a common higher order level are “con-
tiguous.” For example, this applies readily to all counties in a state,
census blocks in a census tract, and similar multilevel structures. This
approach became more commonly known after its application in a
study of innovation adoption by Case (1991, 1992). In the spatial
econometric literature, it is sometimes referred to as Case weights.

The result is a block-diagonal spatial weights structure, in which
all the spatial units in a block are neighbors, but there is no neighbor
relation that spills over across blocks. In this respect, block weights
are similar to the regime weights used in the treatment of spatial
heterogeneity in Chapters 12 and 13.

3.1.3 Higher Order Contiguity

Up to this point, we have only considered the notion of a direct neigh-
bor, or, more precisely, a first order neighbor. This concept can be
generalized to allow for higher order neighbors, similar to the time
series context, where a time shift can pertain to multiple periods. A
higher order neighbor is defined in a recursive fashion, as a first order
neighbor to a lower order neighbor. More formally, j is a neighbor of
order k to i if:

• j is a first order neighbor to h,

• h and i are neighbors of order k − 1,
• j is not already a lower order neighbor to i.

Using this logic, candidates to be a second order neighbor would be
any first order neighbor to another observation that is already a first

42 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

order neighbor. However, this also has to be be limited to only those
locations that are not already first order neighbors, to avoid duplica-
tion.

An e�cient algorithm that construct higher order contiguity weights
while removing redundant and circular paths is given in Anselin and
Smirnov (1996). It is the approach implemented in all three software
packages.

3.1.4 Transformation of Weights

In practice, the spatial weights are seldom used in their binary form,
but subject to a transformation or standardization. We consider three
common procedures: row-standardization, double standardization and
variance stabilizing.

3.1.4.1 Row-Standardization

Row-standardization takes the given weights wij (e.g, the binary 0-1
weights) and divides them by the row sum:

wij(s) = wij��
j

wij .

As a result, each row sum of the row-standardized weights equals 1.
Also, the sum of all weights, S0 = ∑i∑j wij , equals n, the total number
of observations.2 Row-standardization is the default approach in all
three software packages.

3.1.4.2 Double Standardization

Double standardization turns the weights matrix into a stochastic ma-
trix, such that the sum of all the elements equals 1:

wij(ds) = wij��
i
�
j

wij .

As a result, for the new weights, S0 = 1.
3.1.4.3 Variance Stabilizing

The variance stabilizing transformation was suggested by Tiefelsdorf
et al. (1999) in the context of inference for Moran’s I statistic in the

2Strictly speaking, this is only correct in the absence of so-called isolates, i.e.,
observations without neighbors (see Section 3.1.5.1). With q isolates, the sum
S0 = n − q.

3.1. BASIC PRINCIPLES 43

presence of heteroskedastic data. It consists of a two-step transforma-
tion of the original weights wij . First, each element is divided by the
square root of the row sum of squared weights:

w∗ij = wij���
j

w2
ij

In the second step all the weights are rescaled by a factor n�Q, where
Q = ∑i∑j w

∗
ij . This standardization is included for the sake of com-

pleteness, but is seldom used in practice.

3.1.5 Characteristics of Weights

The spatial weights matrix can be conceptualized as a mathematical
expression for the structure of a network, where the spatial observa-
tions (locations) are nodes and the existence of a “neighbor” relation
corresponds to a link. The characteristics of this network structure can
be summarized by means of several statistics. In the three software
packages, this is limited to some basic descriptive statistics derived
from the number of neighbors for each location, the so-called neighbor
cardinality. These include the minimum, maximum, mean and median
number of neighbors, the number of non-zero weights, and the propor-
tion of weights that are non-zero (an indication of the sparseness of
the weights matrix).

A straightforward visualization of the structure of the weights ma-
trix is obtained by means of a so-called connectivity histogram. This
histogram shows the frequency of occurrence for each number of neigh-
bors. In other words, each bar in the histogram gives how many spa-
tial units have the corresponding number of neighbors. Ideally, the
histogram is symmetric around a single mode, without any extremely
high number of neighbors. While this is typically the case for con-
tiguity weights, distance weights can result in a very large range of
neighbor cardinality (see Chapter 4).

Two particular features of the connectivity distribution need to be
taken into account. One is when the distribution is clearly bi-modal.
This typically occurs when the spatial layout of observations is non-
standard. For example, a situation where there are spatial units fully
enclosed within another spatial unit (e.g., city counties in the U.S.
state of Virginia), the connectivity histogram will have a mode at 1
(for the enclosed units, which all have exactly one neighbor, i.e., the
enclosing unit), and a remainder distribution with a mode around 5 or
6. The bimodal nature of the distribution will a↵ect the interpretation
of the spatially lagged variables (see Section 3.1.6).

A second feature is the occurrence of islands or isolates, to which
we turn next.

44 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

3.1.5.1 Isolates

A particularly undesirable feature of the neighbor count distribution is
when some locations do not have neighbors. In the associated spatial
weights matrix, all elements in the row corresponding to such a loca-
tion are zero: wij = 0, ∀j. Such observations are referred to as isolates
or islands. They are easy to identify in the connectedness statistics,
when the minimum number of neighbors is zero, or in the connectivity
histogram, when a bar is present for the value zero.

The isolates may be proper, e.g., when there are true islands in-
cluded in the data set, or they may be the result of problems in the
creation of the partial weights (e.g., in the case of an incorrect topol-
ogy for the data). In either case, the inclusion of isolates in a spatial
econometric analysis causes complications. The main issue is whether
or not to keep the observations in question as part of the data set.
There are two aspects to this problem.

A first aspect pertains to the consequences in terms of the purely
spatial characteristics of a data analysis. Since the corresponding
weights are all zero, any averaging of neighboring locations will yield
zero as the result. The zero value therefore essentially eliminates the
isolate from any consideration of spatial e↵ects.

In a spatial regression specification, the inclusion of a spatially
lagged variable introduces zero values for the islands (see Section 3.1.6).
This may bias the estimate for the autoregressive parameter, unless it
is properly accounted for in the estimation algorithm.

The complications resulting from isolates in the spatial analysis
would suggest that they should be eliminated from the data set. This
has great intuitive appeal, since spatial analysis is about interaction
and isolates do not interact.

A second aspect of the isolate problem pertains to the loss of de-
grees of freedom that would result from dropping unconnected obser-
vations from the analysis. For the non-spatial aspects of the analysis,
such as the estimation of regular, non-spatial parameters in a model,
this may a↵ect the precision of the results. Note that in contrast to the
spatial analysis, the non-spatial aspects of the econometric model are
not a↵ected by the presence of isolates. Therefore, non-spatial aspects
of the analysis, such as the estimation of regular, non-spatial parame-
ters in a model, may lose precision as a result of dropping the isolates
from the data set. This is a particular concern when the number of
observations is small. In large data sets (n > 10000), this is unlikely
to have any practical e↵ect, as long as the number of isolates is small.

In practice, one needs to make a careful decision and evaluate
whether the loss of some degrees of freedom is outweighed by the
greater purity of the spatial analysis. In any event, when the iso-
lates are not dropped, it is important to ensure that the results of the

3.1. BASIC PRINCIPLES 45

analysis are interpreted correctly.

3.1.6 Spatially Lagged Variables

With a neighbor structure defined by the non-zero elements of the
spatial weights matrix W, a spatially lagged variable is a weighted
sum or a weighted average of the neighboring values for that variable.
In our notation, we designate the spatial lag of y as Wy. As a result,
for observation i, the spatial lag of yi, referred to as [Wy]i (the variable
Wy observed for location i) is:

[Wy]i = wi,1y1 +wi,2y2 + ⋅ ⋅ ⋅ +wi,nyn,

or,

[Wy]i = n�
j=1

wi,jyj ,

where the weights wi,j consist of the elements of the i-th row of the
matrix W, matched up with the corresponding elements of the vector
y. In other words, this is a weighted sum of the values observed at
neighboring locations, since the non-neighbors are not included (those
i for which wij = 0). Typically, the weights matrix is very sparse,
so that only a small number of neighbors contribute to the weighted
sum. For row-standardized weights, with ∑j wij = 1, the spatially
lagged variable becomes a weighted average of the values at neighbor-
ing observations.

In matrix notation, the spatial lag expression corresponds to the
matrix product of the n × n spatial weights matrix W with the n × 1
vector of observations y, or W.y. The matrix W can therefore be
considered to be the spatial lag operator on the vector y.

It is seldom necessary to create a spatially lagged variable explic-
itly in any of the three software packages. For all the spatial models,
this is done internally by the software. For example, in a spatial lag
model, the spatially lagged dependent variable Wy is computed di-
rectly without user intervention from the weights information provided
in the model specification. Similarly, in the estimation of the spatial
lag model by means of IV/GMM (Chapter 7), the spatially lagged ex-
planatory variables WX that are used as instrumental variables are
computed under the hood and do not need to be specified explicitly.
There are however some instances in which selected spatially lagged
explanatory variables may be included on the right hand side of the
equation, as in a so-called spatial cross-regressive specification (Florax
and Folmer 1992). In those instances, the spatially lagged variables
need to be created and included explicitly into the model specifica-
tion, since the software does not distinguish between a regular and a
spatially lagged explanatory variable.

46 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

3.1.7 Weights File Formats

In practice, contiguity-based weights are typical extremely sparse,
meaning that the weights matrix mostly consists of zero elements.
For example, using rook contiguity for the continental U.S. counties
(n = 3085) yields an average of 5.6 neighbors for each county. This
corresponds to only 17,188 out of the 9,514,140 o↵-diagonal ele-
ments of the n × n weights matrix being non-zero, or 0.18%. Hence,
in actual computations, it is important to store the weights e�ciently
in a sparse format and thereby avoid allocating storage space for the
many zeros. Several formats have been suggested to accomplish this
in practice.

Arguably the most commonly used file format for sparse contiguity
information is the so-called GAL format, introduced in the SpaceStat
software package in 1995, and since adopted by many others, including
GeoDa, STARS and the spdep library in R.3 The GAL format consists of
two parts to store the contiguity information for each observation. In
a first part (typically entered on a separate line), an identifier for the
observation is given, followed by the number of neighbors. Next follows
a line containing the identifiers for the neighbors. The identifier in
question must be unique, to properly match the attribute information
for the observation to its contiguity structure.

In GeoDa, the GAL weights file also contains a header line (i.e.,
the first line in the file), with metadata such as the number of ob-
servations, the name of the shape file from which the contiguity was
derived, and the variable name (field in the data base) for the iden-
tifier. GeoDaSpace and PySAL also support a GAL format with only
the number of observations in the header line. Note that the GAL file
only stores the presence of contiguity, but not a value for the spatial
weights.

A second major file format for sparse weights is the so-called GWT
format, also initially introduced in SpaceStat. For each pair of neigh-
boring observations, a record consists of the triplet i, j,wij , where i is
the ID for the origin spatial unit (i.e., the unit under consideration),
j is the ID for the destination unit (i.e., the neighbor), and wij is the
value for the weights. For contiguity weights, the latter is always 1.
GWT weights are more appropriate for the storage of distance-based
weights, and will be revisited in Chapter 4.

All three software packages support saving and reading spatial
weights in GAL and GWT formats. In addition, GeoDaSpace and PySAL
can also read and write a number of alternative weights formats.

3The origins of the GAL format are the proposals formulated in the Geograph-
ical Algorithms Library in the United Kingdom in the late 1980s.

3.2. CONTIGUITY WEIGHTS IN GEODA 47

(a) Menu (b) Toolbar

Figure 3.1: GeoDa weights creation

3.2 Contiguity Weights in GeoDa

In GeoDa, spatial weights can be constructed in a project from any file,
data base or web feature service that was specified as the input source
(see Section 2.1). Once a project is active, the current layer is used as
the input and need not be specified explicitly (in contrast to what held
for versions of GeoDa prior to 1.6). Weights creation is invoked either
from the menu, using Tools > Weights > Create (see Figure 3.1a),
or using the left-most icon in the weights toolbar (Figure 3.1b). An
existing file can be read by clicking on the middle icon of the weights
toolbar, labeled Open weights file, or by using Tools > Weights
> Select from the menu.

In addition, in the context of a regression specification, an existing
weights file can be read by selecting its file name, or a new weights file
can be created by clicking on the corresponding icon in the regression
specification dialog (Figure 2.10). For example, to specify the spa-
tial weights to carry out diagnostics for spatial autocorrelation in the
context of an OLS regression, the weights need to be selected in the
dialogs shown in Figures 5.9 and 5.10. This is discussed more fully in
Section 5.2.4 of Chapter 5. The same process is required for the max-
imum likelihood estimation of the spatial lag and spatial error models
in GeoDa (see Chapters 8 and 10).

In the spatial regression functionality of GeoDa, the spatial weights
are always used in row-standardized form.

3.2.1 The Weights Interface

GeoDa’s weights file creation dialog is shown in Figure 3.2a. It consists
of three main parts, delineated by the red boxes in the Figure. The top
box contains the specification of the ID Variable. This is a variable
that contains a unique integer value for each observation, such that
the rows in the spatial weights matrix can be accurately matched with
the observations in the data set. For example, in Figure 3.2b, the ID
Variable has been set to FIPSNO.

When no acceptable ID Variable is contained in the data set,
one can be included by clicking on the Add ID Variable button. A
common issue encountered in practice is that a variable that seems to
take on integer values is actually stored as real in the data base. As a

48 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

(a) GeoDa weights dialog (b) ID variable specified

Figure 3.2: GeoDa weights creation dialog

(a) Queen contiguity (b) Rook contiguity

Figure 3.3: Queen and Rook contiguity in GeoDa

consequence, such a variable would not be recognized as a proper ID
Variable. The Add ID Variable function will ensure that an integer
sequence number is inserted in the data set. This variable will either
have the default label POLY ID, or any other unique variable name
specified in the dialog by the user.

The second box in the weights file creation dialog pertains to conti-
guity weights, and is further discussed next. The third box deals with
the construction of distance based weights, covered in Chapter 4.

3.2.2 Creating Contiguity Weights

3.2.2.1 First Order Contiguity

Contiguity weights using either the queen criterion or the rook cri-
terion are created by checking the corresponding radio button in the
dialog, as shown in in Figures 3.3a and 3.3b. The default is first order
contiguity, evidenced by the presence of the value 1 in the Order of
contiguity box.

At this point, clicking the Create button will bring up the cus-
tomary File Save dialog and request a name for the new weights file.
In the example shown in Figure 3.4, we used NAT test.gal as the file
name. In fact, the queen weights are the same as those contained in
the sample data file nat queen.gal, but we use a di↵erent file name
here in order not to overwrite the sample file.

The contents of the GAL format file for the first three observations
are illustrated in Figure 3.5. The first line is a header line listing 0, a

3.2. CONTIGUITY WEIGHTS IN GEODA 49

Figure 3.4: Spatial weights save file dialog

Figure 3.5: GAL weights file format

placeholder for future functionality, 3085, the number of observations,
NAT, the name of the source shape file, and FIPSNO, the ID Variable.
Next follow three sets of two lines, one for each observation. The first
set has as first line the ID of the observation, 27077, followed by the
number of neighbors, 3. Next follow the ID values for those neighbors:
27007, 27135, and 27071. The same sequence is used for the other
observations. The GAL file is a simple text file, and thus can be easily
edited. However, extreme care should be used when attempting this,
especially to ensure that symmetry is maintained.

In addition, the Contiguity Weight dialog also contains a check
box for Precision threshold. In most instances, this box should be
kept unchecked. It should only be used when there are small inaccu-
racies present in the GIS and the user has a good sense of the order
of magnitude of these inaccuracies. With a Precision threshold
other than 0, a fuzzy comparison is carried out to determine whether
two polygons have a vertex in common. The default is an exact com-
parison, which assumes that the topology of the underlying polygon
is correct. The Precision threshold option provides a way to deal
with small inaccuracies that avoids the need to go back to a GIS to
fix the topology, but it is by no means a replacement for this GIS
functionality.

3.2.2.2 Higher Order Contiguity

Higher order contiguity is obtained by changing the value for Order
of contiguity from the default of 1 to any other value. For example,
this is illustrated for second order contiguity in Figure 3.6a. An option
for higher order contiguity is to include the lower order contiguity
neighbors in the spatial weights. The default is not to include them

50 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

(a) Second order contiguity (b) Second order inclusive

Figure 3.6: Higher order contiguity in GeoDa

Figure 3.7: GeoDa connectivity histogram

(as in Figure 3.6a), so that the resulting weights have no redundant
or circular paths. However, in some instances, it may be desirable to
include lower order weights. For example, this would be a way to create
a weights matrix that combines first and second order neighbors, in a
case where the first order weights under-bound the range of interaction
and there is no reason to introduce an additional parameter. In those
instances, the box labeled Include lower orders should be checked,
as in Figure 3.6b.

3.2.3 Weights Characteristics

In GeoDa, the weights characteristics are given as a Connectivity
Histogram. This is invoked from the menu as Tools > Weights >
Connectivity Histogram (see Figure 3.1a), or by clicking on the
right-most icon in the weights toolbar (see Figure 3.1b). The result is
a special GeoDa histogram, in which each bar shows how many spatial
units have the number of neighbors shown on the horizontal axis, as
in Figure 3.7.

This visual representation of the distribution of neighbor cardinal-
ities can be further quantified by invoking the Display Statistics
option of the histogram. This is carried out by right clicking on the

3.2. CONTIGUITY WEIGHTS IN GEODA 51

Figure 3.8: GeoDa connectivity histogram with statistics

displayed window, as shown in Figure 3.7. The result is a collection
of descriptive statistics listed below the graph, as in Figure 3.8. This
is the standard set of statistics that accompanies the histogram func-
tionality in GeoDa. Of particular interest in the current context is the
bottom line, which lists the min, max, median, and mean number of
neighbors, among others. In our example, the respective values are 1,
14, 6, and 5.88914.

In case there are isolates, not only will the min be 0 and there will
be a bar corresponding to this value, but a warning message will be
generated as well.

3.2.4 Constructing Spatially Lagged Variables

In GeoDa, the computation of spatially lagged variables is handled as
part of the Variable Calculation functionality in the Table menu.
From the main menu, it is invoked as shown in Figure 3.9a, by select-
ing Table > Variable Calculation. Alternatively, it can be started
by right-clicking in the Table itself.4 This brings up the Variable
Calculation dialog, shown in Figure 3.9b. The Spatial Lag compu-
tation is selected by clicking on the fourth tab at the top of the dialog.
If a spatial weights file has already been created, it will be listed in
the dialog, as in our example, with the file NAT test.gal listed un-
der the label Weight in Figure 3.9a. If not, the weights creation icon
needs to be invoked to create a weights matrix. The next steps consist
of specifying a name for the new spatially lagged variable (shown in
Figure 3.10a as W HR60) and selecting the variable for which the lag

4The table is invoked by means of the fourth icon on the GeoDa toolbar (see
Figure 2.1).

52 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

(a) Variable calculation (b) Spatial lag option

Figure 3.9: Spatial lag computation in GeoDa Table

(a) New variable name (b) Variable selection

Figure 3.10: Spatial lag computation variable selection in GeoDa Table

needs to be computed from a drop down list (shown in Figure 3.11
as HR60). Clicking Apply will compute the new variable and insert it
into the data table, as illustrated in Figure 3.11. At this point, the
variable can be used for any analysis in GeoDa and also included in a
regression specification.

Figure 3.11: Spatial lag added to GeoDa Table

3.3. CONTIGUITY WEIGHTS IN GEODASPACE 53

3.3 Contiguity Weights in GeoDaSpace

3.3.1 The Weights Interface

In GeoDaSpace, the functionality to construct and read spatial weights
is contained in the Model Weights and Kernel Weights sections of
the regression interface (see Figure 2.12). Contiguity weights are man-
aged through the Model Weights interface, detailed in Figure 3.12a.
Kernel Weights are a form of distance-based weights and are further
discussed in Chapter 4.

The functionality is invoked by means of the three icons on top of
the dialog. The left-most icon is to Create Weights, the next icon to
Open Weights from an existing spatial weights file, and the right-most
(gear) button is to report the Properties of the weights. We cover
each in turn.

3.3.2 Creating Model Weights

Selecting the Create Weights icon in the Model Weights panel brings
up a dialog that is very similar to the layout used for GeoDa. Here too,
the dialog lists the current shape file as the Input File and gives an
option between Contiguity weights and Distance weights. We focus
on the left tab for contiguity weights.

The Contiguity Weights dialog provides the choice between a ra-
dio button for queen and rook contiguity, as illustrated in Figure 3.13a
for queen contiguity and Figure 3.13b for rook contiguity. Again, an ID
Variable must be specified. In our example, we have selected FIPSNO.
If no suitable ID Variable is available in the data set, clicking on the
+ sign will add a sequence number as the ID (the default variable name
is POLY ID).

The default for the contiguity weights is first order contiguity.
Higher order contiguity weights can be constructed by specifying an

(a) Initial interface (b) Populated interface

Figure 3.12: Model Weights interface in GeoDaSpace

54 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

(a) Queen contiguity (b) Rook contiguity

Figure 3.13: Contiguity weights in GeoDaSpace

Order of contiguity greater than 1. As in GeoDa, there is the op-
tion to include the lower order neighbors by marking the corresponding
check box.

After clicking on the Create button, a file save dialog opens to
specify a file name for the spatial weights. The file will be saved with
a GAL file extension. In addition, a note will be placed in the Model
Weights window indicating that a contiguity weights file has been
created, as illustrated in Figure 3.12b. Note that this is not the file
name (as in the example for GeoDa, we used NAT test.shp), but gives
the name of the original shape file (NAT.shp) followed by contiguity.
This distinguishes the case where the weights are created on the fly
from when they are read from a file (Section 3.3.3).

3.3.3 Reading Contiguity Weights

GeoDaSpace supports all the weights formats of the PySAL weights
module. This includes not only the standard GAL and GWT formats,
but also formats adopted by ArcGIS, MatLab, Stata, etc. The full list
of supported formats can be seen from the file dialog that opens when
the Open Weights menu icon is selected in the Model Weights panel
of the GeoDaSpace GUI. The list of files that are enabled for opening
is illustrated in Figure 3.14.

In order to read a weights file, select the file name in the open
file dialog. When this is completed, the file name will be listed in
the Model Weights panel. In our example, we used the sample file
nat queen.gal for queen contiguity among the continental U.S. coun-
ties. As a result, this filename is now listed in the panel, as shown
in Figure 3.15. Note that in contrast with the previous Section, the
actual name of the file is listed.

3.3. CONTIGUITY WEIGHTS IN GEODASPACE 55

Figure 3.14: Weights formats in open file dialog

Figure 3.15: Queen contiguity weights file from nat queen.gal

3.3.4 Weights Properties

The properties of the spatial weights can be accessed by selecting the
gear icon in the Model Weights panel. This opens a panel for the

Figure 3.16: Properties of the nat queen.gal weights file

56 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

Weights Properties Editor that lists several useful characteristics
of the spatial weights, as shown in Figure 3.16.

At the top is a selection bar that lists the current weights file
(nat queen.gal). If other weights were created during the current
session, they will also be accessible from this drop down list. The
name of the weights is repeated in the box associated with the Name
label, in our example File: nat queen.gal, identical to the entry
in the Model Weights panel.

Skipping to the fourth panel, labeled Neighbors of, we see the
list of neighbors for observation with ID value 27077 (i.e., FIPSNO =
27077) as well as the values for the matching the weights. The neigh-
bors are the counties with FIPSNO 27007, 27071 and 27135, with 0.333
as the value for the weights. Note how the contiguity information is
identical to lines 3–4 in the GAL file shown in Figure 3.5. A similar
listing for other observations is generated by scrolling down the list
under the Neighbors label and selecting the desired ID value.

Finally, a complete list of values for the ID Variable is given under
the Ids: label. It is alway useful to check this to ensure that no
mismatches happen between the weights file and the data set.

3.3.4.1 Weights Transformations

The second label in the Weights Properties Editor gives the cur-
rent Transform. The default in GeoDaSpace is to treat all Model
Weights in row-standardized form. This is indicated in the box as R:
Row-standardization (global sum = n). However, this option not
only lists the current state of the weights object, but also allows one
to change the transformation. In all, five di↵erent states are possible,
as listed in Figure 3.17a:

• Binary, B

• Row-standardization, R

• Double-standardization (i.e., a stochastic weights matrix), D

• Variance stabilizing, V

as well as restoring the original state (before any transformation, as
O).

To assess the e↵ect of a transformation, we use the drop-down list
to select B: Binary. As a result, the value for the weights in the
Neighbors of panel changes from 0.333 to 1.0, as illustrated in Fig-
ure 3.17b. As stated before, all estimation procedures in GeoDaSpace
require the spatial weights to be row-standardized, so this functional-
ity should only be invoked by power users who are fully aware of the
consequences of doing so.

3.3. CONTIGUITY WEIGHTS IN GEODASPACE 57

(a) Default (b) Binary

Figure 3.17: Weights transformations in GeoDaSpace

Figure 3.18: Weights connectivity viewer

3.3.4.2 Visualizing Weights Properties

The Weights Properties Editor contains three more panels with
useful information about the characteristics of the spatial weights. The
third panel in the Editor, labeled Islands indicates whether or not
the weights yield unconnected observations. In our example, this is
not the case, so that the box lists No Islands. If there had been
isolates, the panel would contain the values for the ID Variable for
those observations.

The Cardinalities are shown in the fifth panel. For each obser-
vation, listed by its ID, this gives the number of neighbors. This forms
the basis for the construction of the Histogram. listed as the last
panel. This is a tabular counterpart to the Connectivity Histogram

58 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

Figure 3.19: Creating a spatial lag from the variable list

of Figure 3.7. Each pair lists the number of neighbors and how many
observations have that many neighbors. In our example, we see that
the minimum and maximum number of neighbors are 1 and 14, with
respectively 24 and 1 observations that match this cardinality.

A final feature of the Weights Properties Editor is an experi-
mental contiguity Viewer. Clicking on the Launch button at the bot-
tom of the Editor window starts an interactive viewer thats visualizes
the neighbors of a selected unit based on the specified spatial weights.
A file dialog will request the name for a matching shape file, which will
then generate a map. One can use the mouse to brush over the map,
such that for each selected spatial unit the corresponding neighbors
(following the definition from the weights file) are highlighted on the
map in the Weights Inspector, as illustrated in Figure 3.18 for the
NAT.shp example shape file. The bottom of the window lists the ID
of the selected unit as well as the IDs of the neighbors and the corre-
sponding weights values. This is adjusted dynamically as the selection
changes.

3.3.5 Creating Spatially Lagged Variables

A spatially lagged variable is created from the variable list in the
GeoDaSpace GUI. As shown in Figure 3.19, this is invoked by clicking
on the W icon at the top left of the variable list window.

Clicking the icon brings up a variable and weights selection dialog,
as illustrated in Figure 3.20. An existing weights file is required, e.g.,
nat queen.gal in the example shown, and the variables are selected
from a drop down list, as shown in Figure 3.20a. Each time a variable
is selected, a new variable name with a prefix W is created and listed in
the window, as in Figure 3.20b. Pressing the OK button brings up a file
save dialog in which a name for a new data file (with file extension dbf)
must be specified. In other words, the new spatially lagged variables
are not added to the current data set, but included in a new dbf file

3.3. CONTIGUITY WEIGHTS IN GEODASPACE 59

(a) Variable selection (b) Variable names

Figure 3.20: Spatial lag dialog in GeoDaSpace

Figure 3.21: Saving the file with spatially lagged variables

(e.g., natlag.dbf in our example in Figure 3.21).
Upon completion of the file save process, the new data file is in-

cluded as the data set in the GUI, with the spatially lagged variables
added to the variable list, as shown in Figure 3.22. At this point, the
variables are available to be included in any model specification.

Figure 3.22: Spatially lagged variables in variable list

60 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

3.4 Contiguity Weights in PySAL

The spatial weights functionality of GeoDaSpace wraps a series of
PySAL classes and methods and makes them available through a GUI.
In the command line environment of the PySAL weights module, these
methods can be invoked directly, with access to the full range of ar-
guments and options. By contrast, even though GeoDaSpace uses the
same code base, some of the options are limited by design to the most
commonly used ones.

The estimation routines in spreg take advantage of the sparse ma-
trix format supported by the Python scipy module (scipy is a stated
dependency for PySAL). In GeoDaSpace, this is implemented in a trans-
parent fashion, without any user intervention. In PySAL, two di↵erent
spatial weights data structures are supported as Python classes. One,
the weights object class W, is the most general spatial weights class
and relies heavily on the use of dictionaries to store the observation
IDs and associated weights. The other data structure implements the
spatial weights as a scipy sparse array in the form of the WSP class.

The user regression functions in spreg take a spatial weights ob-
ject as an argument and convert it internally to a sparse array format.
For completeness sake, we briefly discuss the di↵erence between the
two data structures, but for all practical purposes, creating and read-
ing/writing weights objects relies on the general weights class W.

In the remainder of this section, we review some of the most com-
mon contiguity weights operations contained in PySAL. This function-
ality is made available through so-called convenience or user classes,
which can be called directly with a simplified namespace. The user
classes provide a more user-friendly interface to a collection of under-
lying classes, methods and functions that carry out the actual oper-
ations. With a few exceptions, we limit the discussion to the func-
tionality that matches GeoDaSpace, which is only a subset of the full
weights operations available in PySAL.

For a complete listing of all options and arguments, we refer to
the PySAL online documentation (tutorials and API Reference), and
of course the source code itself.

We begin with a discussion of the two data structures for a spatial
weights object. As a preliminary, we make sure that the numpy and
pysal modules are imported:

>>> import numpy as np
>>> import pysal

3.4. CONTIGUITY WEIGHTS IN PYSAL 61

3.4.1 Spatial Weights Object

3.4.1.1 The Spatial Weights Class W

The fundamental spatial weights class in PySAL is almost never created
directly by the user, but is invoked by several functions that create
weights from a shape file, or read the contents from an existing GAL
file. However, it is important to understand the range of attributes
associated with a spatial weights object, once created.

The only mandatory argument to create a spatial weights object is
a Python dictionary labeled neighbors that contains a collection of
key-value pairs, with the observation ID as the key, and a list with the
IDs of the associated neighbors as the value. For example, for FIPSNO
= 27077 in our U.S. county queen contiguity file (e.g., as listed in
Figure 3.5), the corresponding entry would be (with the ID as an
integer value):

27077 : [27007, 27135, 27071]

To make the discussion more concrete, we consider a simple exam-
ple of a regular 3× 3 grid with the 9 observations labeled 0,1,2, . . . ,8,
starting in the upper-left corner of the grid and moving row by row.
The first row thus consists of observations 0,1,2, etc. We add a slight
complication (the purpose of which will soon become clear) in the form
of a 10-th observation (with label 9) that is unconnected to the others
(i.e., an isolate). We specify the neighbors dictionary as follows:

>>> neighbors = {0: [3, 1], 1: [0, 4, 2], 2: [1, 5],
3: [0, 6, 4], 4: [1, 3, 7, 5], 5: [2, 4, 8],
6: [3, 7], 7: [4, 6, 8], 8: [5, 7],
9 : []}

We use the rook criterion of contiguity so that the four corner cells
each have two neighbors, the other edge cells (not corners) have three,
and the center cell (labeled 4) has four neighbors. Cell 9 has an empty
list for its neighbor value (unconnected).

The complete call to create a spatial weights object is:

>>> w = pysal.W(neighbors,weights=None,id_order=None,
silent_island_warning=False)

Of the four arguments, only the neighbors dictionary is required. The
optional arguments are:

• weights: a dictionary with as key the observation ID and as
value a list of the weights for the neighbors; the weights must
be given in the same order as the neighbors are listed in the
matching neighbors list

• id order: a list with the order in which the ID variables appear
in the data array

62 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

• silent island warning: a boolean to indicate if the warning
message for isolates needs to be turned o↵; the default is False,
i.e., a warning is always generated

Typically, the values for the weights are equal for all the neighbors,
so that the ordering requirement is less onerous than it may sound.
When no weights are specified, the default value is 1.0. The id order
is important to make sure that the weights and the observations are
aligned properly. This is necessary because a Python dictionary data
structure is inherently unordered. The default is to use the order that
results from a lexicographic sorting of the keys, but in some appli-
cations this may lead to unexpected results. It is always safest to
specify the id order explicitly. In an actual application, this may be
done indirectly by matching the id order to the observation sequence
number of the ID variable in a data set.

We now illustrate these concepts with our example. First, we con-
sider the default case in which only the mandatory neighbors dictio-
nary is passed as an argument:

>>> w1 = pysal.W(neighbors)

WARNING: there is one disconnected observation (no neighbors)
Island id: [9]

As expected, this generates a warning message that the observation
with ID = 9 has no neighbors. While we defer a full discussion of the
attributes of the spatial weights object to the next section, we consider
three core characteristics at this point: the number of observations, n;
a dictionary containing the spatial weights, weights; and a list with
the order for the IDs, id order. In our example, this gives:

>>> w1.n
10
>>> w1.weights
{0: [1.0, 1.0],
1: [1.0, 1.0, 1.0],
2: [1.0, 1.0],
3: [1.0, 1.0, 1.0],
4: [1.0, 1.0, 1.0, 1.0],
5: [1.0, 1.0, 1.0],
6: [1.0, 1.0],
7: [1.0, 1.0, 1.0],
8: [1.0, 1.0],
9: []}
>>> w1.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The default value for the weights is 1.0. They are listed in the lex-
icographic order for the ID variables, which is also the id order. In

3.4. CONTIGUITY WEIGHTS IN PYSAL 63

our example, this happens to be the order in which we entered the IDs
in the neighbors dictionary. However, the two are unconnected. To
illustrate this, consider the same neighbors dictionary, but now with
entries in column-wise order, as:

>>> neighbors1 = { 9 : [],
0: [3, 1], 3: [0, 6, 4], 6: [3, 7],
1: [0, 4, 2], 4: [1, 3, 7, 5], 7: [4, 6, 8],
2: [1,5], 5: [2,4,8], 8: [5, 7]}

>>> w1a = pysal.W(neighbors1)

WARNING: there is one disconnected observation (no neighbors)
Island id: [9]

The resulting weights dictionary does not follow the order given in
neighbors1, but the same lexicographic order as before.5

>>> w1a.weights
{0: [1.0, 1.0],
1: [1.0, 1.0, 1.0],
2: [1.0, 1.0],
3: [1.0, 1.0, 1.0],
4: [1.0, 1.0, 1.0, 1.0],
5: [1.0, 1.0, 1.0],
6: [1.0, 1.0],
7: [1.0, 1.0, 1.0],
8: [1.0, 1.0],
9: []}
>>> w1a.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

We now set the weights explicitly, and create a dictionary with values
that correspond to row-standardized weights:

>>> myweights = {0: [0.5, 0.5],
1: [0.3333, 0.3333, 0.3333],
2: [0.5, 0.5],
3: [0.3333, 0.3333, 0.3333],
4: [0.25, 0.25, 0.25, 0.25],
5: [0.3333, 0.3333, 0.3333],
6: [0.5, 0.5],
7: [0.3333, 0.3333, 0.3333],
8: [0.5, 0.5],
9: []}

With the weights argument specified and using the original neighbors
dictionary, the new weights object is then:

>>> w2 = pysal.W(neighbors,weights=myweights)

5Recall that in Python a dictionary does not have an inherent order.

64 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

WARNING: there is one disconnected observation (no neighbors)
Island id: [9]

which contains:

>>> w2.weights
{0: [0.5, 0.5],
1: [0.3333, 0.3333, 0.3333],
2: [0.5, 0.5],
3: [0.3333, 0.3333, 0.3333],
4: [0.25, 0.25, 0.25, 0.25],
5: [0.3333, 0.3333, 0.3333],
6: [0.5, 0.5],
7: [0.3333, 0.3333, 0.3333],
8: [0.5, 0.5],
9: []}

Next, we explicitly change the order of IDs to reflect a column-wise
sequence and pass the associated list as an argument to the weights
class constructor:

>>> order_id = [9, 0, 3, 6, 1, 4, 7, 2, 5, 8]
>>> w3 = pysal.W(neighbors,weights=myweights,id_order=order_id)

This yields:

>>> w3.weights
{0: [0.5, 0.5],
1: [0.3333, 0.3333, 0.3333],
2: [0.5, 0.5],
3: [0.3333, 0.3333, 0.3333],
4: [0.25, 0.25, 0.25, 0.25],
5: [0.3333, 0.3333, 0.3333],
6: [0.5, 0.5],
7: [0.3333, 0.3333, 0.3333],
8: [0.5, 0.5],
9: []}

>>> w3.id_order
[9, 0, 3, 6, 1, 4, 7, 2, 5, 8]

The contents of the weights dictionary are still given with the keys in
lexicographic order, even though the id order is di↵erent. The latter
will be used to match the weights to observations in a data set (i.e.,
a numpy array), for example, in the calculation of a spatially lagged
variable. However, it is immaterial in the way the contents of the
weights dictionary are listed.

Finally, with silent island warning set to True, we do not re-
ceive a warning after creating a weights object with isolates:

3.4. CONTIGUITY WEIGHTS IN PYSAL 65

>>> w4 = pysal.W(neighbors,weights=myweights,
id_order=order_id,
silent_island_warning=True)

So, no warning, which we confirm by checking the value of the corre-
sponding attribute (silent island warning):

>>> w4.silent_island_warning
True

3.4.1.2 Attributes of a Spatial Weights Object

The PySAL spatial weights object has a total of 37 attributes, includ-
ing the four arguments used in its construction (neighbors, weights,
id order and silent island warning). The attributes can be broadly
classified into four groups:

• basic descriptors of the weights object

• statistical characteristics of the spatial weights

• transformation functions

• auxiliary variables used in the computation of test statistics and
estimators

We briefly review them in turn, in alphabetical order, by group.

Basic Descriptors of the Weights Object
To fully appreciate the properties of the weights object, it is important
to make a distinction between three important aspects: the ID, the
value of the weight, and the sequence number of the ID in the id order
list. For example, using the previously created object w3, we see that
the ID for observation 0 is in position 1 in the id order list. Below,
we give the main attributes that describe the weights object with a
brief explanation and illustration using the w3 example. For attributes
that can also be passed as arguments, we refer to the previous Section.

• id2i: a dictionary with as key the ID and as value the sequence
number (starting with 0) of that ID in the id order list

>>> w3.id2i
{0: 1, 1: 4, 2: 7, 3: 2, 4: 5, 5: 8, 6: 3, 7: 6, 8: 9,
9: 0}

• id order: an argument (see previous Section)

• id order set: a Boolean flag indicating whether or not the
id order was set explicitly; the default is False, but since we
did set this argument for w3, the result is

66 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

>>> w3.id_order_set
True

• neighbor offsets: a dictionary with as key the ID and as
value a list with the sequence numbers of the neighbors from
the id order list; this dictionary has the same structure as the
neighbors dictionary, but the neighbor IDs are replaced by their
sequence numbers

>>> w3.neighbor_offsets
{0: [2, 4],
1: [1, 5, 7],
2: [4, 8],
3: [1, 3, 5],
4: [4, 2, 6, 8],
5: [7, 5, 9],
6: [2, 6],
7: [5, 3, 9],
8: [8, 6],
9: []}

• neighbors: the mandatory argument to W (see previous Section)

• silent island warning: an argument (see previous Section)

• transform: the current transformation, is originally set as ‘O’;
the transformations are the same as for GeoDaSpace (see Sec-
tion 3.3.4.1)

• transformations: a nested dictionary with as key the transfor-
mations that were carried out and as value the corresponding
weights dictionary; this records all previous transformations so
that one can quickly move back without recalculating the trans-
formation

>>> w3.transform = ’B’
>>> w3.transformations
{’B’: {0: [1.0, 1.0],
1: [1.0, 1.0, 1.0],
2: [1.0, 1.0],
3: [1.0, 1.0, 1.0],
4: [1.0, 1.0, 1.0, 1.0],
5: [1.0, 1.0, 1.0],
6: [1.0, 1.0],
7: [1.0, 1.0, 1.0],
8: [1.0, 1.0],
9: []},
’O’: {0: [0.5, 0.5],
1: [0.3333, 0.3333, 0.3333],

3.4. CONTIGUITY WEIGHTS IN PYSAL 67

2: [0.5, 0.5],
3: [0.3333, 0.3333, 0.3333],
4: [0.25, 0.25, 0.25, 0.25],
5: [0.3333, 0.3333, 0.3333],
6: [0.5, 0.5],
7: [0.3333, 0.3333, 0.3333],
8: [0.5, 0.5],
9: []}}

• weights: the weights dictionary (see previous Section)

Statistical Characteristics of the Spatial Weights
The statistical characteristics of the spatial weights are the same char-
acteristics reviewed for GeoDaSpace in Section 3.3.4, with a few addi-
tions.

• asymmetries: a list of ID pairs for which the weights are asym-
metric, i.e., i is a neighbor of j, but j is not a neighbor of i; for
contiguity weights, this list will always be empty, unless there
was an error in the neighbors dictionary

>>> w3.asymmetries
[]

• cardinalities: a dictionary with as key the observation ID and
as value the number of neighbors for that observation

>>> w3.cardinalities
{0: 2, 1: 3, 2: 2, 3: 3, 4: 4, 5: 3, 6: 2, 7: 3, 8: 2,
9: 0}

• histogram: a list of tuples with as first element the number
of neighbors (cardinality) and as second element the number of
observations with that many neighbors (i.e., the same as what
is visualized by the connectivity histogram in GeoDa)

>>> w3.histogram
[(0, 1), (1, 0), (2, 4), (3, 4), (4, 1)]

• islands: a list with the IDs of the unconnected observations

>>> w3.islands
[9]

• max neighbors: the maximum number of neighbors

>>> w3.max_neighbors
4

68 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

• mean neighbors: the average number of neighbors

>>> w3.mean_neighbors
2.3999999999999999

• min neighbors: the minimum number of neighbors (will be 0 if
there are unconnected observations

>>> w3.min_neighbors
0

• n: the number of observations

>>> w3.n
10

• nonzero: the number of non-zero cells in the n×n weights matrix

>>> w3.nonzero
24

• pct nonzero: the percent non-zero cells in the n × n weights
matrix

>>> w3.pct_nonzero
0.24

• sd: the standard deviation of the number of neighbors

>>> w3.sd
1.019803902718557

Transformation Functions
The transformation methods convert weights objects from one format
to another, or handle other utility functions.

• asymmetry: method used to compute the asymmetries attribute,
returns the list of asymmetries, or an empty list, if none are
present (the default for proper contiguity weights)

>>> w3.asymmetry()
[]

• full: creates a full numpy array from the weights information;
returns a tuple with the full matrix as the first element and the
id order as the second element

3.4. CONTIGUITY WEIGHTS IN PYSAL 69

>>> w3.full()
(array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 1., 0., 1., 0., 0., 0., 0., 0.],
[0., 1., 0., 1., 0., 1., 0., 0., 0., 0.],
[0., 0., 1., 0., 0., 0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0., 1., 0., 1., 0., 0.],
[0., 0., 1., 0., 1., 0., 1., 0., 1., 0.],
[0., 0., 0., 1., 0., 1., 0., 0., 0., 1.],
[0., 0., 0., 0., 1., 0., 0., 0., 1., 0.],
[0., 0., 0., 0., 0., 1., 0., 1., 0., 1.],
[0., 0., 0., 0., 0., 0., 1., 0., 1., 0.]]),

[9, 0, 3, 6, 1, 4, 7, 2, 5, 8])

If one just wants the full array, the function needs to be sub-
scripted by ([0]) as in

>>> w3.full()[0]
array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 1., 0., 1., 0., 0., 0., 0., 0.],
[0., 1., 0., 1., 0., 1., 0., 0., 0., 0.],
[0., 0., 1., 0., 0., 0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0., 1., 0., 1., 0., 0.],
[0., 0., 1., 0., 1., 0., 1., 0., 1., 0.],
[0., 0., 0., 1., 0., 1., 0., 0., 0., 1.],
[0., 0., 0., 0., 1., 0., 0., 0., 1., 0.],
[0., 0., 0., 0., 0., 1., 0., 1., 0., 1.],
[0., 0., 0., 0., 0., 0., 1., 0., 1., 0.]])

• get transform: method to return the current weights transfor-
mation, same e↵ect as the transform attribute

>>> w3.get_transform()
’B’

• set shapefile: method to record the items for a GAL header
file, for internal use only

• set transform: method to set weights transformation to one
of ‘O’, ‘B’, ‘R’, or ’V’; same e↵ect as setting the transform
attribute directly

>>> w3.transform = ’B’
>>> w3.set_transform(’R’)
>>> w3.transform
’R’

• sparse: an attribute of the spatial weights object that contains
a sparse numpy array representation of the weights, intended for
manipulation as an array (not as a sparse spatial weights object,
see towsp)

70 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

>>> w3.sparse
<10x10 sparse matrix of type ’<type ’numpy.float64’>’
with 24 stored elements in Compressed Sparse Row format>

• towsp: method to convert a regular spatial weights object to a
sparse spatial weights object (class WSP); the result is not just a
sparse numpy array (as for sparse), but an actual weights object
with attributes

>>> ws = w3.towsp()
>>> ws
<pysal.weights.weights.WSP at 0xb266930>

Auxiliarly Variables
A series of auxiliary variables are stored as attributes of a spatial
weights object to facilitate the calculation of tests and diagnostics for
spatial autocorrelation, such as Moran’s I and the Lagrange Multiplier
tests (see Section 5.1.6 of Chapter 5). Typically, these are not needed
in and of themselves, but they can be investigated for pedagogical
purposes, e.g., to illustrate the di↵erent components of the statistical
inference, such as expression tr(WW +W′W) in Equation 5.15.

• diagW2: the elements of the diagonal of the matrix WW

>>> w3.diagW2
array([0. , 0.33333333, 0.41666667, 0.33333333,

0.41666667, 0.33333333, 0.41666667, 0.33333333,
0.41666667, 0.33333333])

• diagWtW: the elements of the diagonal of the matrix W′W
>>> w3.diagWtW
array([0. , 0.22222222, 0.5625 , 0.22222222,

0.5625 , 0.44444444, 0.5625 , 0.22222222,
0.5625 , 0.22222222])

• diagWtW WW: the elements of the diagonal of the sum of matri-
ces WW and W′W (i.e., the sum of the matching elements of
diagW2 and diagWtW)

>>> w3.diagWtW_WW
array([0. , 0.55555556, 0.97916667, 0.55555556,

0.97916667, 0.77777778, 0.97916667, 0.55555556,
0.97916667, 0.55555556])

• s0: the sum of all weights S0 = ∑i∑j wij ; note that in our
example this is one less than the number of observations (9 = 10
- 1) because of the unconnected unit, in normal circumstances
S0 = n for row-standardized weights

3.4. CONTIGUITY WEIGHTS IN PYSAL 71

>>> w3.s0
8.9999999999999982

• s1: S1 = ∑i∑j(wij +wji)2; not used in spatial econometrics

>>> w3.s1
6.9166666666666661

• s2: S2 = ∑j(∑iwij +∑iwji)2; not used in spatial econometrics

>>> w3.s2
36.80555555555555

• s2array: an array that constitutes an intermediate step in the
computation of s2, consisting of the elements for each j (s2
is the sum of the elements in this array); not used in spatial
econometrics

>>> w3.s2array
array([[0.],

[2.77777778],
[5.0625],
[2.77777778],
[5.0625],
[5.44444444],
[5.0625],
[2.77777778],
[5.0625],
[2.77777778]])

• trcW2: the trace of the matrixWW, i.e., the sum of the elements
of diagW2

>>> w3.trcW2
3.3333333333333335

• trcWtW: the trace of the matrix W′W, i.e., the sum of the ele-
ments of diagWtW

>>> w3.trcWtW
3.5833333333333335

• trcWtW WW: the trace of the matrix WW +W′W, i.e., the sum
of trcW2 and trcWtW

>>> w3.trcWtW_WW
6.9166666666666661

72 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

3.4.1.3 The Sparse Spatial Weights Class WSP

In spreg, all the weights manipulations are carried out using sparse
spatial weights objects. These are constructed under the hood and
seldom need to be created explicitly. For completeness sake, we briefly
describe the sparse spatial weights class WSP and its attributes.

We already saw one way to create a WSP object from a regular
spatial weights object by means of the towsp method (see previous
Section). The way to create such an object directly is:

>>> ws = pysal.WSP(sparse,id_order=None)

with as arguments:

• sparse: a matrix in a scipy sparse array format; required ar-
gument

• id order: optional, the id order list, same as for a regular
spatial weights object

The sparse array passed to WSP can be any sparse format supported by
scipy. Internally, it is converted to a CSR (compressed sparse row)
format, so this extra step can be avoided by passing a CSR array to
begin with.

We illustrate this by continuing to use our previous example, where
we created the weights object w3. We saw in the previous Section
how we can extract a sparse array from this object using the sparse
attribute. This array is in the CSR format, so we can use it as an
input to WSP.

>>> sparsemat = w3.sparse
>>> sparsemat
<10x10 sparse matrix of type ’<type ’numpy.float64’>’
with 24 stored elements in Compressed Sparse Row format>
>>> sparseW = pysal.weights.WSP(sparsemat,id_order=order_id)
>>> sparseW
<pysal.weights.weights.WSP at 0xb2f9490>

Of course, in practice, one will typically first create a regular spatial
weights object and then convert it to a sparse object using the towsp
method. Finally, a sparse spatial weights object can be converted to a
regular spatial weights object by means of the pysal.weights.WSP2W
function (see the online API reference for technical details).

3.4.1.4 Attributes of a Sparse Spatial Weights Object

Sparse spatial weights objects have only a small subset of the attributes
of a regular weights object. They are intended to be manipulated
directly as sparse matrices, so the attributes are limited to the ar-
guments passed, id order, the number of observations, n, and two

3.4. CONTIGUITY WEIGHTS IN PYSAL 73

auxiliary variables, s0 and trcWtW WW. Their meaning is the same as
for a regular spatial weights object.

In our example:

>>> sparseW.id_order
[9, 0, 3, 6, 1, 4, 7, 2, 5, 8]
>>> sparseW.n
10
>>> sparseW.s0
8.9999999999999982
>>> sparseW.trcWtW_WW
6.9166666666666661

The other attributes of a weights object are not available and will
generate an error message when requested. For example:

>>> sparseW.transform
AttributeError Traceback (most recent call last)
...
----> 1 sparseW.transform
AttributeError: ’WSP’ object has no attribute ’transform’

3.4.2 Creating Contiguity Weights from a Shape-
file

Spatial weights objects based on the contiguity between polygons can
be created directly from ESRI shape files. PySAL currently supports
both queen and rook, as well as higher order contiguity.6

3.4.2.1 Queen Contiguity Weights

In PySAL, queen contiguity weights are constructed by means of the
special user function queen from shapefile . The only mandatory
argument for this function is the filename for the shape file, including
the shp file extension. When the shape file is not present in the cur-
rent working directory, the full pathname needs to be specified. The
complete call is:

>>> w = pysal.queen_from_shapefile(shapefile, idVariable=None,
sparse=False)

The optional arguments are:

• idVariable: a variable from the data base associated with the
shape file (the dbf file) to be used as an ID variable for the
weights

6The contiguity extraction algorithms in PySAL assume the shapefile respects
planar enforcement, requiring that no polygons overlap and that any lines must be
split at points of intersection.

74 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

• sparse: a boolean flag to indicate whether a regular spatial
weights object is created (False, the default) or a sparse spatial
weights object (True)

The function returns a spatial weights object, either a regular one
(the default), or a sparse spatial weights object for sparse = True.
These objects have all the attributes discussed previously, respectively
in Section 3.4.1.2 for regular weights and in Section 3.4.1.4 for sparse
weights.

To illustrate this, we again take the U.S. county NAT.shp data
from the PySAL examples set. We use the pysal.examples.get path
function to make sure the proper path name is prefixed to the name
of the shape file. We set the idVariable to FIPSNO (this is the same
approach as taken for GeoDa and GeoDaSpace). The full call is then:

>>> wq = pysal.queen_from_shapefile(
pysal.examples.get_path(’NAT.shp’),
idVariable=’FIPSNO’)

>>> wq
<pysal.weights.weights.W at 0xb3c2510>

It is clear that wq is a spatial weights object.
It is important to keep in mind that the spatial object created from

the shape file has binary weights. This is not directly obvious, since
the transform attribute is initially set to ’O’:

>>> wq.transform
’O’

but the weights are binary, for, example, for observation with FIPSNO
= 27077:

>>> wq.weights[27077]
[1.0, 1.0, 1.0]

It is therefore critical to always follow the creation of the weights
object by an explicit row-standardization:

>>> wq.transform = ’R’
>>> wq.weights[27077]
[0.3333333333333333, 0.3333333333333333, 0.3333333333333333]

With the sparse flag set to True, the resulting object is a sparse
spatial weights object. For example:

>>> wqsparse = pysal.queen_from_shapefile(
pysal.examples.get_path(’NAT.shp’),
idVariable=’FIPSNO’,sparse=True)

>>> wqsparse
<pysal.weights.weights.WSP at 0x9a67830>

Note that these weights are binary:

3.4. CONTIGUITY WEIGHTS IN PYSAL 75

>>> wqsparse.s0
18168.0

If the weights were row-standardized, s0 should equal the number
of observations, n = 3085, so clearly in this case, they are not. In
order to get sparse spatial weights objects into row-standardize form,
a better approach is to create a regular spatial weights object, say
w, convert it to row-standardized form using w.transform = ’R’ and
then obtain a sparse spatial weights object from w.towsp().

3.4.2.2 Rook Contiguity Weights

Rook contiguity weights are constructed from a shape file by means of
the user function rook from shapefile. The complete call is identical
to that for queen weights, except that a di↵erent function name is used:

>>> wr = pysal.rook_from_shapefile(shapefile, idVariable=None,
sparse=False)

The arguments and options are the same as those covered in Sec-
tion 3.4.2.1, and they will not be repeated here.

3.4.3 Creating Weights for a Regular Lattice Struc-
ture

PySAL includes functionality to generate a spatial weights object di-
rectly for any rectangular or hexagonal lattice structure.7 This is often
very useful in the context of simulation experiments. Since the neigh-
bor structure of the lattice is known, there is no need to construct it
by reading the contents of a shape file.

For a rectangular lattice, the function is lat2W, invoked as:

>>> wgrid = pysal.lat2W(nrows=5,ncols=5,rook=True,id_type=’int’)

This function returns a standard spatial weights object.8 Without any
arguments, i.e., pysal.lat2W(), this results in the weights for a 5×5
regular grid, i.e., a 25 × 25 weights matrix. The four arguments are:

• nrows: the number of rows in the grid, default is 5

• ncols: the number of columns in the grid, default is 5

• rook: the type of contiguity, default is True for rook contiguity

7Note that this functionality is not available through the GUI of GeoDa or
GeoDaSpace.

8PySAL also contains a function that creates a sparse spatial weights object for
a regular lattice: pysal.weights.lat2SW. See the online API reference for details.

76 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

• id type: the representation of the ID variable, either as an inte-
ger, starting with 0 (’int’), as a real variable, starting with 0.0
(’float’), or as a simple string, starting with ’id0’ (’string’)

We return to the 3 × 3 lattice we used as an example before, and
explore the three options for the id type. First, the default case, using
integer values:

>>> w3x3 = pysal.lat2W(3,3)
>>> w3x3.weights
{0: [1.0, 1.0],
1: [1.0, 1.0, 1.0],
2: [1.0, 1.0],
3: [1.0, 1.0, 1.0],
4: [1.0, 1.0, 1.0, 1.0],
5: [1.0, 1.0, 1.0],
6: [1.0, 1.0],
7: [1.0, 1.0, 1.0],
8: [1.0, 1.0]}

next, using real valued IDs (the key in the weights dictionary):

>>> w3x3f = pysal.lat2W(3,3,id_type=’float’)
>>> w3x3f.weights
{0.0: [1.0, 1.0],
1.0: [1.0, 1.0, 1.0],
2.0: [1.0, 1.0],
3.0: [1.0, 1.0, 1.0],
4.0: [1.0, 1.0, 1.0, 1.0],
5.0: [1.0, 1.0, 1.0],
6.0: [1.0, 1.0],
7.0: [1.0, 1.0, 1.0],
8.0: [1.0, 1.0]}

and finally, for strings:

>>> w3x3s = pysal.lat2W(3,3,id_type=’string’)
>>> w3x3s.weights
{’id0’: [1.0, 1.0],
’id1’: [1.0, 1.0, 1.0],
’id2’: [1.0, 1.0],
’id3’: [1.0, 1.0, 1.0],
’id4’: [1.0, 1.0, 1.0, 1.0],
’id5’: [1.0, 1.0, 1.0],
’id6’: [1.0, 1.0],
’id7’: [1.0, 1.0, 1.0],
’id8’: [1.0, 1.0]}

A similar function for hexagonal grids is pysal.hexLat2W. For further
technical details, we refer to the online API reference.

3.4. CONTIGUITY WEIGHTS IN PYSAL 77

3.4.4 Block Weights

A particular form of contiguity weights are the block weights intro-
duced in Section 3.1.2. PySAL supports the creation of these weights,
but neither GeoDa or GeoDaSpace currently do. The function that
accomplishes this is regime weights. The full call is:

>>> wreg = pysal.regime_weights(regimes)

with one required argument:

• regimes: a list or numpy array matching the observations, with
for each observation the regime it belongs to.

The identifiers for the regimes can be numeric, unique integers or
unique floats, or strings (unique for each regime). The result is a
spatial weights object in binary form (i.e., not with row-standardized
weights).

To illustrate this, consider a list for a data set with 15 observations
and three regimes, indicated by ’s’, ’e’ and ’w’. The list is:

>>> regimes = [’s’, ’s’, ’s’, ’s’, ’s’,
’e’, ’e’, ’e’, ’e’, ’e’,
’w’, ’w’, ’w’, ’w’, ’w’]

The block weights are created as:

>>> wreg = pysal.regime_weights(regimes)

with the following neighbor structure:

>>> wreg.neighbors
{0: [1, 2, 3, 4],
1: [0, 2, 3, 4],
2: [0, 1, 3, 4],
3: [0, 1, 2, 4],
4: [0, 1, 2, 3],
5: [6, 7, 8, 9],
6: [5, 7, 8, 9],
7: [5, 6, 8, 9],
8: [5, 6, 7, 9],
9: [5, 6, 7, 8],
10: [11, 12, 13, 14],
11: [10, 12, 13, 14],
12: [10, 11, 13, 14],
13: [10, 11, 12, 14],
14: [10, 11, 12, 13]}

Each of the observations is a neighbor to the other observations in the
same block, but not to any outside the block.

78 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

3.4.5 Higher Order Contiguity

Once a first order contiguity spatial weights object is available, higher
order contiguity can be obtained in a straightforward manner. The
PySAL higher order function takes as arguments a weights object
and the order of contiguity (as an integer).9 The complete call is:

w_high = pysal.higher_order(w, k = 2)

where

• w: a regular (i.e., not sparse) spatial weights object, required

• k: the order of contiguity, default k = 2

This returns a spatial weights object with the higher order contiguity,
using the same Anselin and Smirnov (1996) algorithm as GeoDa. How-
ever, in contrast to the implementation in GeoDa and GeoDaSpace,
there is no option to include lower order neighbors. This must be
carried out explicitly by means of the PySAL w union function:

w_combined = pysal.w_union(w1, w2,
silent_island_warning = False)

The required arguments to this function are two (non-sparse) spatial
weights objects. Optional is a flag for the silent island warning
which has the same meaning as in the construction of a spatial weights
object (see Section 3.4.1.1). It returns a new spatial weights object
(with binary weights) in which the neighbor structures of the two ar-
guments are combined (union). In the special case of higher order con-
tiguity weights, this must be implemented in multiple steps, gradually
building up the weights structure until the desired order is achieved.
For example, if second order contiguity with lower order neighbors is
desired, this is accomplished by applying w union to the first and sec-
ond order weights. However, for higher orders, such as third, the first
and second need to be combined first, then the combined weights need
to be merged with the third order contiguity, in a step-wise fashion.

We illustrate this for the queen contiguity weights we created in
Section 3.4.2.1. Second order contiguity follows as:

>>> wq2 = pysal.higher_order(wq,k=2)

and including the first order neighbors from:

>>> wq2include = pysal.w_union(wq,wq2)

9The PySAL function pysal.weights.higher order sp implements higher order
contiguity for sparse weights objects. See the online API reference for technical
details.

3.4. CONTIGUITY WEIGHTS IN PYSAL 79

We now compare the neighbors for observation with FIPSNO = 53019
in the first order contiguity weights and the two higher order weights
(see also lines 3-4 in the GAL file of Figure 3.5 for the first order
neighbors of FIPSNO = 53019):

>>> wq.neighbors[53019]
[53065, 53043, 53047]
>>> wq2.neighbors[53019]
[53071, 53077, 12131, 4001, 4025, 45003, 45009, 45021, 45025]
>>> wq2include.neighbors[53019]
[4001, 12131, 45025, 53065, 45003, 53071, 45009,
53043, 53077, 53047, 4025, 45021]

As expected, the neighbors for wq2include combine the lists for the
first and second order contiguity weights.

3.4.6 Reading Weights Files

Arguably, the most straightforward way to create a spatial weights
object in PySAL is to read its content from a pre-existing file. As
previously shown in Figure 3.14, PySAL currently supports 11 weights
file formats. Reading a weights file operates in the same manner as
reading any other file in PySAL and is based on the FILEIO module. It
operates in three basic steps: (i) create a file handle to open the file
for reading; (ii) read the contents and convert into a spatial weights
object; and (iii) close the file.

We illustrate this using the nat queen.gal queen contiguity file
for the U.S. counties that we created with GeoDa in Section 3.2.2.1. A
partial glance at its contents is given in Figure 3.5.

The three steps to read this GAL file into a spatial weights object
are:

>>> galw = pysal.open(pysal.examples.get_path(’nat_queen.gal’),
’r’)

>>> w = galw.read()
>>> galw.close()

We now have the spatial weights object w and we can check its at-
tributes in the usual fashion. For example, the dimension is found
as:

>>> w.n
3085

The neighbors and weights for ID = ’27077’ are:

>>> w.neighbors[’27077’]
[’27007’, ’27135’, ’27071’]
>>> w.weights[’27077’]
[1.0, 1.0, 1.0]

80 CHAPTER 3. SPATIAL WEIGHTS: CONTIGUITY

Note that the weights are binary, so that an explicit row-standardization
always needs to be carried out before using the weights in spatial re-
gression operations. Also, the ID variable is interpreted as a string,
rather than an integer, hence the need to surround the value by quotes.
It is good practice to check the nature of the ID variable by listing part
of the id order attribute. For example:

>>> w.id_order[:3]
[’27077’, ’53019’, ’53065’]

Weights files created in other formats are read in the same fashion,
by using the open and read commands on the file (with full path name
specified if needed) with the ’r’ option. PySAL internally recognizes
the file extension and uses the appropriate file reader for that format.

3.4.7 Writing and Converting Weights Files

Weights objects created in PySAL can be written out to files in a
range of supported formats (see Figure 3.14). The file extension de-
termines the format that will be used. For example, assuming we
created the file object w by reading from the file nat queen.gal (as
in Section 3.4.6), its contents can be written to a GAL format file by
means of the open and write commands on the file (with full path
name specified if needed), with the ’w’ option and the weights object
(w) specified as the argument of the write function. In our exam-
ple, using natqueen1.gal as the file name for the output file, this is
accomplished with:

>>> galwout = pysal.open("natqueen1.gal",’w’)
>>> galwout.write(w)
>>> galwout.close()

The first few lines of the natqueen1.gal file are as follows:

3085
27077 3
27007 27135 27071
53019 3
53047 53065 53043
53065 4
53043 53051 53063 53019

Note how the original header line is replaced by a single item, the
number of observations (3085). In all other respects, the file is identical
to the input file.

PySAL also contains functionality to convert between weights for-
mats directly, using the pysal.weight convert command. However,
this will typically not be necessary, since a weights object can be read
from any supported format and subsequently written to a file in any

