Lattice Data

SERGIO REY

Geographic Information Analysis
School of Geographical Sciences and Urban Planning
Arizona State University

Geographic Information Analysis by Sergio Rey
is licensed under a Creative Commons Attribution 4.0 International License.
1. Lattice Data
 - Representation
 - Examples

2. Spatial Autocorrelation and Dependence
 - Data Types and Spatial Autocorrelation
 - Spatial Dependence
Outline

1. Lattice Data
 - Representation
 - Examples

2. Spatial Autocorrelation and Dependence
 - Data Types and Spatial Autocorrelation
 - Spatial Dependence
Lattice Data

Spatial Domain: D

- Discrete and fixed
- Locations nonrandom
- Locations countable

Examples of lattice data

- Attributes collected by ZIP code
- Census tract
- Remotely sensed data reported by pixels
Spatial Domain: D

- Discrete and fixed
- Locations nonrandom
- Locations countable

Examples of lattice data

- Attributes collected by ZIP code
- Census tract
- Remotely sensed data reported by pixels
Spatial Domain: D

- Discrete and fixed
- Locations nonrandom
- Locations countable

Examples of lattice data

- Attributes collected by ZIP code
- Census tract
- Remotely sensed data reported by pixels
Spatial Domain: D

- Discrete and fixed
- Locations nonrandom
- Locations countable

Examples of lattice data

- Attributes collected by ZIP code
- Census tract
- Remotely sensed data reported by pixels
Lattice Data

Spatial Domain: D
- Discrete and fixed
- Locations nonrandom
- Locations countable

Examples of lattice data
- Attributes collected by ZIP code
- Census tract
- Remotely sensed data reported by pixels
Lattice Data

Spatial Domain: D

- Discrete and fixed
- Locations nonrandom
- Locations countable

Examples of lattice data

- Attributes collected by ZIP code
 - census tract
 - remotely sensed data reported by pixels
Lattice Data

Spatial Domain: \(D \)
- Discrete and fixed
- Locations nonrandom
- Locations countable

Examples of lattice data
- Attributes collected by ZIP code
- census tract
- remotely sensed data reported by pixels
Lattice Data

Spatial Domain: D
- Discrete and fixed
- Locations nonrandom
- Locations countable

Examples of lattice data
- Attributes collected by ZIP code
- census tract
- remotely sensed data reported by pixels
Site

- Each location is now an area or site
- One observation on Z for each site
- Need a spatial index: $Z(s_i)$

$Z(s_i)$

- s_i is a representative location within the site
- e.g., centroid, largest city
- Allows for measuring distances between sites
Each location is now an area or site

One observation on Z for each site

Need a spatial index: $Z(s_i)$

s_i is a representative location within the site

e.g., centroid, largest city

Allows for measuring distances between sites
Site

- Each location is now an area or *site*
- One observation on \(Z \) for each site
- Need a spatial index: \(Z(s_i) \)

\(Z(s_i) \)

- \(s_i \) is a representative location within the site
- e.g., centroid, largest city
- Allows for measuring distances between sites
Site

- Each location is now an area or site
- One observation on Z for each site
- Need a spatial index: $Z(s_i)$

$Z(s_i)$

- s_i is a representative location within the site
- e.g., centroid, largest city
- Allows for measuring distances between sites
Lattice Data: Indexing

Site
- Each location is now an area or site
- One observation on Z for each site
- Need a spatial index: $Z(s_i)$

$Z(s_i)$
- s_i is a representative location within the site
- e.g., centroid, largest city
- Allows for measuring distances between sites
Lattice Data: Indexing

Site
- Each location is now an area or *site*
- One observation on Z for each site
- Need a spatial index: $Z(s_i)$

$Z(s_i)$
- s_i is a representative location within the site
 - e.g., centroid, largest city
 - Allows for measuring distances between sites
Each location is now an area or site
One observation on Z for each site
Need a spatial index: $Z(s_i)$

s_i is a representative location within the site
E.g., centroid, largest city
Allows for measuring distances between sites
Lattice Data: Indexing

Site
- Each location is now an area or site
- One observation on Z for each site
- Need a spatial index: $Z(s_i)$

$Z(s_i)$
- s_i is a representative location within the site
- e.g., centroid, largest city
- Allows for measuring distances between sites
Sites are areal units

- Attribute is typically aggregated or averaged
- Aggregated: event counts (number of crimes per tract)
- Averaged: per capita income by state

Coverage

- Lattice data is usually exhaustive in coverage
- e.g., U.S. states, census tracts in San Diego
- Prediction or interpolation not meaningful
- Explaining attribute variation across sites is the focus
Sites are areal units

- Attribute is typically aggregated or averaged
 - Aggregated: event counts (number of crimes per tract)
 - Averaged: per capita income by state

Coverage

- Lattice data is usually exhaustive in coverage
 - e.g., U.S. states, census tracts in San Diego
- Prediction or interpolation not meaningful
- Explaining attribute variation across sites is the focus
Lattice Data: Aggregation and Coverage

Sites are areal units
- Attribute is typically aggregated or averaged
- Aggregated: event counts (number of crimes per tract)
- Averaged: per capita income by state

Coverage
- Lattice data is usually exhaustive in coverage
- e.g., U.S. states, census tracts in San Diego
- Prediction or interpolation not meaningful
- Explaining attribute variation across sites is the focus
Lattice Data: Aggregation and Coverage

Sites are areal units

- Attribute is typically aggregated or averaged
- Aggregated: event counts (number of crimes per tract)
- Averaged: per capita income by state

Coverage

- Lattice data is usually exhaustive in coverage
- e.g., U.S. states, census tracts in San Diego
- Prediction or interpolation not meaningful
- Explaining attribute variation across sites is the focus
Lattice Data: Aggregation and Coverage

Sites are areal units

- Attribute is typically aggregated or averaged
- Aggregated: event counts (number of crimes per tract)
- Averaged: per capita income by state

Coverage

- Lattice data is usually exhaustive in coverage
- e.g., U.S. states, census tracts in San Diego
- Prediction or interpolation not meaningful
- Explaining attribute variation across sites is the focus
Lattice Data: Aggregation and Coverage

Sites are areal units
- Attribute is typically aggregated or averaged
- Aggregated: event counts (number of crimes per tract)
- Averaged: per capita income by state

Coverage
- Lattice data is usually exhaustive in coverage
 - e.g., U.S. states, census tracts in San Diego
 - Prediction or interpolation not meaningful
 - Explaining attribute variation across sites is the focus
Lattice Data: Aggregation and Coverage

Sites are areal units

- Attribute is typically aggregated or averaged
- Aggregated: event counts (number of crimes per tract)
- Averaged: per capita income by state

Coverage

- Lattice data is usually exhaustive in coverage
- e.g., U.S. states, census tracts in San Diego
- Prediction or interpolation not meaningful
- Explaining attribute variation across sites is the focus
Lattice Data: Aggregation and Coverage

Sites are areal units
- Attribute is typically aggregated or averaged
- Aggregated: event counts (number of crimes per tract)
- Averaged: per capita income by state

Coverage
- Lattice data is usually exhaustive in coverage
- e.g., U.S. states, census tracts in San Diego
- Prediction or interpolation not meaningful
- Explaining attribute variation across sites is the focus

© 2015- Sergio Rey

http://sergerey.org
Sites are areal units
- Attribute is typically aggregated or averaged
- Aggregated: event counts (number of crimes per tract)
- Averaged: per capita income by state

Coverage
- Lattice data is usually exhaustive in coverage
- e.g., U.S. states, census tracts in San Diego
- Prediction or interpolation not meaningful
- Explaining attribute variation across sites is the focus
1 Lattice Data
 - Representation
 - Examples

2 Spatial Autocorrelation and Dependence
 - Data Types and Spatial Autocorrelation
 - Spatial Dependence
Lattice Data: State Per Capita Incomes

[Map of the United States showing states colored by per capita incomes in 1929, with percentiles indicated.]
Lattice Data: Spatial Autocorrelation

http://sergerey.org
Outline

1. Lattice Data
 - Representation
 - Examples

2. Spatial Autocorrelation and Dependence
 - Data Types and Spatial Autocorrelation
 - Spatial Dependence
Data Types and Autocorrelation

Point Data
- focus on geometric pattern
- random vs. nonrandom
- clustered vs. uniform

Geostatistics
- 2-D modeling of spatial covariance (pairs of observations in function of distance)
- kriging, spatial prediction
Data Types and Autocorrelation

Lattice Data
- areal units: states, counties, census tracts, watersheds
- points: centroids of areal units
- focus on the spatial nonrandomness of attribute values
1 Lattice Data
 • Representation
 • Examples

2 Spatial Autocorrelation and Dependence
 • Data Types and Spatial Autocorrelation
 • Spatial Dependence
There is no question with respect to emergent geospatial science. The important harbingers were Geary’s article on spatial autocorrelation, Dacey’s paper about two- and K-color maps, and that of Bachi on geographic series. – Berry, Griffith, Tiefelsdorf (2008)
Spatial Dependence

Working Concept

- what happens at one place depends on events in nearby places
- all things are related but nearby things are more related than distant things (Tobler)
- central focus in lattice data analysis

Goodchild 1991

- a world without positive spatial dependence would be an impossible world
- impossible to describe
- impossible to live in
- hell is a place with no spatial dependence
Spatial Dependence

Working Concept

- what happens at one place depends on events in nearby places
- all things are related but nearby things are more related than distant things (Tobler)
- central focus in lattice data analysis

Goodchild 1991

- a world without positive spatial dependence would be an impossible world
- impossible to describe
- impossible to live in
- hell is a place with no spatial dependence
Spatial Dependence

Working Concept

- what happens at one place depends on events in nearby places
- all things are related but nearby things are more related than distant things (Tobler)
- central focus in lattice data analysis

Goodchild 1991

- a world without positive spatial dependence would be an impossible world
- impossible to describe
- impossible to live in
- hell is a place with no spatial dependence
Spatial Dependence

Working Concept
- what happens at one place depends on events in nearby places
- all things are related but nearby things are more related than distant things (Tobler)
- central focus in lattice data analysis

Goodchild 1991
- a world without positive spatial dependence would be an impossible world
- impossible to describe
- impossible to live in
- hell is a place with no spatial dependence
Spatial Dependence

Working Concept
- what happens at one place depends on events in nearby places
- all things are related but nearby things are more related than distant things (Tobler)
- central focus in **lattice data analysis**

Goodchild 1991
- a world without positive spatial dependence would be an impossible world
- impossible to describe
- impossible to live in
- **hell** is a place with **no** spatial dependence
Spatial Dependence

Working Concept
- what happens at one place depends on events in nearby places
- all things are related but nearby things are more related than distant things (Tobler)
- central focus in lattice data analysis

Goodchild 1991
- a world without positive spatial dependence would be an impossible world
 - impossible to describe
 - impossible to live in
 - hell is a place with no spatial dependence
Spatial Dependence

Working Concept
- what happens at one place depends on events in nearby places
- all things are related but nearby things are more related than distant things (Tobler)
- central focus in lattice data analysis

Goodchild 1991
- a world without positive spatial dependence would be an impossible world
- impossible to describe
 - impossible to live in
- hell is a place with no spatial dependence
Spatial Dependence

Working Concept
- what happens at one place depends on events in nearby places
- all things are related but nearby things are more related than distant things (Tobler)
- central focus in lattice data analysis

Goodchild 1991
- a world without positive spatial dependence would be an impossible world
- impossible to describe
- impossible to live in
- hell is a place with no spatial dependence
Spatial Dependence

Working Concept
- what happens at one place depends on events in nearby places
- all things are related but nearby things are more related than distant things (Tobler)
- central focus in lattice data analysis

Goodchild 1991
- a world without positive spatial dependence would be an impossible world
- impossible to describe
- impossible to live in
- hell is a place with no spatial dependence
Spatial Dependence

Categorizing
- Type: Substantive versus nuisance
- Direction: Positive versus negative

Issues
- Time versus space
- Inference
Process Based

- Part of the process under study
- Leaving it out
 - Incomplete understanding
 - Biased inferences
Substantive Spatial Dependence

Process Based

- Part of the process under study
- Leaving it out
 - Incomplete understanding
 - Biased inferences
Process Based

- Part of the process under study
- Leaving it out
 - Incomplete understanding
 - Biased inferences
Substantive Spatial Dependence

Process Based

- Part of the process under study
- Leaving it out
 - Incomplete understanding
 - Biased inferences
Process Based

- Part of the process under study
- Leaving it out
 - Incomplete understanding
 - Biased inferences
Nuisance Spatial Dependence

Not Process Based

- Artifact of data collection
- Process boundaries not matching data boundaries
- Scattering across pixels
- GIS induced

© 2015- Sergio Rey
Lattice Data
http://sergerey.org
Nuisance Spatial Dependence

Not Process Based

- Artifact of data collection
- Process boundaries not matching data boundaries
- Scattering across pixels
- GIS induced
Nuisance Spatial Dependence

Not Process Based

- Artifact of data collection
- Process boundaries not matching data boundaries
- Scattering across pixels
- GIS induced
Nuisance Spatial Dependence

Not Process Based

- Artifact of data collection
- Process boundaries not matching data boundaries
- Scattering across pixels
- GIS induced
Nuisance Spatial Dependence

Not Process Based
- Artifact of data collection
- Process boundaries not matching data boundaries
- Scattering across pixels
- GIS induced
Boundary Mismatch

- Even if A and B are independent
- A' and B' will be dependent
Nuisance vs. Substantive Dependence

Issues

- Not always easy to differentiate from substantive
- Different implications for each type
- Specification strategies (Econometrics)
- Both can be operating jointly
Space versus Time

Temporal Dependence

- Past influences the future
- Recursive
- One dimension

![Diagram showing temporal dependence with t, t+1, t+2, t+3]
Space versus Time

Spatial Dependence

- Multi-directional
- Simultaneous